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Abstract 

We report on the prediction accuracy of ligand-based (2D QSAR) and structure-based 

(MedusaDock) methods used both independently and in consensus for ranking the 

congeneric series of ligands binding to three protein targets (UK, ERK2, and CHK1) 

from the CSAR 2011 benchmark exercise. An ensemble of predictive QSAR models was 

developed using known binders of these three targets extracted from the publicly-

available ChEMBL database. Selected models were used to predict the binding affinity of 

CSAR compounds towards the corresponding targets and rank them accordingly; the 

overall ranking accuracy evaluated by Spearman correlation was as high as 0.78 for UK, 

0.60 for ERK2, and 0.56 for CHK1, placing our predictions in top-10% among all the 

participants. In parallel, MedusaDock designed to predict reliable docking poses was also 

used for ranking the CSAR ligands according to their docking scores; the resulting 

accuracy (Spearman correlation) for UK, ERK2, and CHK1 were 0.76, 0.31, and 0.26, 

respectively. In addition, performance of several consensus approaches combining 

MedusaDock and QSAR predicted ranks altogether has been explored; the best approach 

yielded Spearman correlation coefficients for UK, ERK2, and CHK1 of 0.82, 0.50, and 

0.45, respectively. This study shows that (i) externally validated 2D QSAR models were 

capable of ranking CSAR ligands at least as accurately as more computationally intensive 

structure-based approaches used both by us and by other groups and (ii) ligand-based 

QSAR models can complement structure-based approaches by boosting the prediction 

performances when used in consensus. 
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1. Introduction 

The 2011 CSAR benchmark exercise provided the scientific community with the 

opportunity to evaluate and benchmark the reliability of the various computational 

approaches for predicting protein-ligand interactions. Four targets were considered: UK 

(UroKinase), ERK2 (Mitogen-activated protein kinase ERK2), CHK1 (Checkpoint 

Kinase 1), and LPXC (Pseudomonas Aeruginosa UDP-3-O-acyl-GlcNAc deacetylase). 

The objectives for every participant were to (i) accurately predict the binding pose of 

each CSAR ligand, and (ii) rank the series of CSAR ligands for different molecular 

targets according to an assessment of ligands’ binding affinity for each target. 

 The first objective of the CSAR exercise was clearly thought as a “classical” 

benchmarking of molecular docking approaches for predicting native-like, accurate 

binding poses of new ligands towards known targets. Meanwhile, our group especially 

welcomed the second objective as a unique opportunity to employ ligand-based 

approaches for ranking the CSAR ligands and compare their overall ranking reliability 

with that obtained by structure-based approaches used both by other participants and by 

our group. It is important to underline that CSAR organizers did not put any restrictions 

on the use of external publicly-available data, methods, and software.
1
 The participants 

were even encouraged to use as many sources of any potentially useful information as 

possible. We also envisioned the possibility of employing both ligand-based
2
 and 

structure-based
3,4

 approaches and exploring some potential complementarities to rank 

CSAR ligands more accurately. 

 In this study, we aimed at assessing and ranking the binding affinities of CSAR 

ligands using a unique consensus approach (see Table 1) that employed two different 

Page 3 of 34

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4 

 

types of methods: (i) Quantitative Structure-Activity Relationship (QSAR) models built 

with known inhibitors of UK, ERK2, and CHK1 using two-dimensional molecular 

descriptors and machine learning techniques; (ii) MedusaDock molecular docking that 

predicts both the binding poses of CSAR ligands and the corresponding molecular 

affinities. Beyond the comparison of the prediction power of QSAR models versus 

structure-based docking
5
, we pursued the idea of exploring the benefits of using ligand-

based and structure-based approaches in a consensus way instead of contrasting them. 

Similar hybrid strategies have been rarely explored previously
6,7

 so we took this 

benchmarking exercise as an opportunity to test such methodology further.   

The main goal of this study was to reliably assess the relative ranking of CSAR 

ligands by predicting their potency towards given kinase targets. To achieve this goal we 

used cheminformatics approaches to (i) collect and curate chemical data extracted from 

ChEMBL related to binding towards UK and ERK2, and inhibition towards CHK1 and 

LPXC; (ii) develop statistically robust, validated, and externally predictive QSAR models 

to compute CSAR ligands’ activities and rank them accordingly; and (iii) combine QSAR 

and structure-base docking predictions into consensus relative ranking lists. The results of 

our studies suggest that ligand-based QSAR approaches can perform similarly or even 

better than computationally expensive, structure-based approaches. Moreover, we also 

show potential benefits coming from the synergistic use of both approaches as compared 

to single method predictions. These benefits mainly relate to the identification and 

subsequent overriding of activity cliffs (i.e., very similar compounds with dissimilar 

activities) by enriching the predictions from one structural space (2D or 3D) with the 

ones from another. 
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 Here we only report on the results of QSAR modeling and our consensus 

approach; all results and discussion related to the prediction of CSAR ligand binding 

poses (and their overall accuracy) by MedusaDock are published in a separate study.
8
  

 

2. Methods 

2.1. Dataset Preparation 

2.1.1. Data sources 

For each target, we extracted all known associated ligands from the ChEMBL version 12 

database.
9
 For the UK target (CHEMBL3286), a total of 828 binding affinity (Ki) values 

were retrieved. Approximately 1,450 IC50 values were found for CHK1 (CHEMBL4630), 

whereas only 91 Ki values were retrieved for ERK2 (CHEMBL4040). For all three sets, 

we did not consider integrating experimental data coming from qHTS assays, mixing IC50 

and Ki values, or adding data from other sources.  

The fourth target of the CSAR benchmark exercise, LPXC, was excluded from 

our study due to the insufficient amount of data available for QSAR modeling. The 

LPXC-related set extracted from ChEMBL included 53 compounds with exact IC50 

values. Among them, only 11 unique compounds had IC50 below 1µM and the overall 

distribution of pIC50 had a narrow range from 4.2 (inactive compounds) to 6.9 (weakly 

active compounds) with a strong distribution bias towards inactives. Thus, QSAR 

analysis of this dataset was not feasible; nevertheless, we have examined whether 

accurate predictions of LPXC binding affinity for CSAR ligands can be achieved based 

on global chemical similarity considerations. Indeed, among the 16 new ligands provided 

by the CSAR organizers, we found a few compounds highly similar to some of the 53 
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ChEMBL compounds using simple 2D similarity metric (Tanimoto coefficient threshold 

higher or equal than 0.85). Further examination showed that pairs of highly similar 

compounds had very similar binding affinities indeed. For instance, only one chlorine 

group differentiates CSAR_lpxc_11 (pIC50 = 4.7) from ChEMBL107127 (pIC50 = 4.66); 

CSAR_lpxc_14 (pIC50 = 5.6) was very similar to ChEMBL324440 (pIC50 = 5.80), 

CHEMBL104577 (pIC50 = 4.51), CHEMBL104043 (pIC50 = 5.92), and CHEMBL107004 

(pIC50 = 5.26); CSAR_lpxc_11 (pIC50 = 4.7) was also very similar to CHEMBL104671 

(pIC50 = 4.52). This analysis suggests that, even in the absence of sufficiently large 

amounts of data to enable QSAR modeling, it is still possible to obtain accurate 

prediction for a subset of LPXC ligands using cheminformatics techniques. 

   

 

2.1.2. Dataset curation  

The compounds retrieved from the ChEMBL database were preprocessed according to a 

set of guidelines for chemical data curation and standardization that our group published 

recently.
10

 Briefly, after the removal of counterions, structures were standardized and 

converted into canonical tautomeric form with neutral representation and explicit 

hydrogens. As illustrated in Table 2, only 48 out of 91 compounds remained in the ERK2 

dataset after the curation steps including the deletion of stereoisomers and the compounds 

with uncertain and approximate Ki values. In the end, pKi values for the 48 selected 

compounds were ranging from 4.60 to 8.70. Similarly, 717 compounds (out of 899 total) 

were still present in the UK set after curation and their pKi values were ranging from 
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0.30 to 11. Lastly, 1215 out of 1450 compounds remained in the CHK1 dataset with 

pIC50 values ranging between 3.68 and 10. 

 

2.2. Molecular Descriptors 

2.2.1. Dragon descriptors 

 The following types of descriptors were generated using Dragon software (v.5.5, Talete 

SRL, Milan, Italy): 0D-constitutional descriptors (atom and group counts), 1D-functional 

groups, 1D-atom centered fragments, 2D-topological descriptors, 2D-walk and path 

counts, 2D-autocorrelations, 2D-connectivity indices, 2D-information indices, 2D-

topological charge indices, 2D-Eigenvalue-based indices, 2D-topological descriptors, 2D-

edge adjacency indices, 2D-Burden eigenvalues, and various molecular properties such as 

octanol-water partition coefficient. Descriptors with low variance (standard deviation 

lower than 10
-4

) or missing values were removed. Furthermore, if the correlation 

coefficient between any two descriptors exceeded 95%, one of them was removed. The 

remaining descriptors were range-scaled, so that their values were within the interval [0, 

1]. Definition and calculation procedures for Dragon descriptors and the related 

references are given in the Handbook of Molecular Descriptors.
11

 

 

2.2.2. SiRMS descriptors 

HiT QSAR Software
12

 based on Simplex representation of molecular structure 

(SiRMS)
13,14

 was used for generating 2D Simplex descriptors, i.e., number of tetratomic 

fragments with fixed composition and topological structure. At the 2D level, the 

connectivity of atoms in simplex, atom type, and bond nature (single, double, triple, or 
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8 

 

aromatic) have been considered. SiRMS descriptors account not only for the atom type, 

but also for other atomic characteristics that may impact biological activity of molecules, 

e.g., partial charge, lipophilicity, refraction, and atom ability for being a donor/acceptor 

in hydrogen-bond formation (H-bond). For atom characteristics with continuous values 

(charge, lipophilicity, refraction) the range was converted into several discrete groups. 

The atoms have been divided into four groups corresponding to their (i) partial charge 

A≤-0.05<B≤0<C≤0.05<D, (ii) lipophilicity A≤-0.5<B≤0<C≤0.5<D, and (iii) refraction 

A≤1.5<B≤3<C≤8<D. For atomic H-bond characteristic the atoms have been divided into 

three groups: A (acceptor of hydrogen in H-bond), D (donor of hydrogen in H-bond), and 

I (indifferent atom). The usage of sundry variants of differentiation of simplex vertexes 

(atoms) represents the principal feature of SiRMS approach.
15

 Detailed description of 

HiT QSAR based on SiRMS could be found elsewhere.
12–14

 Constant, low-variance, and 

correlated (|R| ≥ 0.9) descriptors were excluded prior to modeling. Thus, descriptor pools 

of 435-889 Simplex descriptors (depending on the dataset) were selected for the 

statistical processing. 

 

2.3. QSAR Modeling  

In this study, we developed a series of QSAR models following the workflow and other 

guidelines we published elsewhere.
10,16

 The QSAR modeling workflow can be divided 

into three major steps
2,16

: (i) data curation, preparation, and analysis, (ii) model building, 

and (iii) model validation/selection. Here we followed a 5-fold external cross-validation 

procedure: for each CSAR target, the full set of compounds with known experimental 

activity was randomly split into five modeling (80% of the full set) and external 
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validation sets (remaining 20%). Models were built using the modeling set compounds 

only, and it is important to emphasize that the external set compounds were never taken 

into account to build and/or select the models. Briefly, each modeling set was split into 

many training and test sets for SVM method and plethora of training and out-of-bag set 

for RF approach; then the models were built using the compounds belonging to each 

training set and applied to test set compounds for assessing their properties. Pearson’s 

correlation coefficient (R
2
), Root Mean Square Error (RMSE), and Spearman’s rank 

correlation coefficient (ρ) were used to assess the prediction performances of developed 

models. 

 Best models were identified and selected according to estimated R
2
 values for test 

set (SVM) or out-of-bag set (RF). Then, selected models were applied to the external set 

compounds to predict their experimental properties. This overall procedure is repeated 

five times to ensure that every compound from the full set is present once (and only once) 

in the external test set. While compounds were present in the external test sets, they have 

never been used to derive, bias, or select the models; thus, the entire procedure gives 

more or less fair estimation of the true predictivity of the models. In addition, 1000 

rounds of Y-randomization were performed for each selected model in order to avoid 

chance correlations. 

Model’s Applicability Domain (AD) aims to determine whether the given model 

is capable of predicting the activity of a query compound within a reasonable error.
16

 In 

this study, we defined the AD of SVM models as a threshold distance DT between a 

query compound and its nearest neighbors in the training set. If the distance of the test 

compound from any of its k nearest neighbors in the training set exceeds the threshold, 
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the prediction is considered unreliable. For RF models the AD was estimated using the 

local (Tree) approach that was described by Artemenko et al.
17

 

 

2.4. Random Forest (RF) 

Random Forest models were constructed according to the original RF algorithm
18

 

implemented by Polischuk et al.
19

 RF is an ensemble of single decision trees. Outputs of 

all trees are aggregated to obtain one final prediction. Each tree has been grown as 

follows: (i) a bootstrap sample was produced from the whole set of N compounds to form 

a training set for the current tree. Compounds which are not in this current tree training 

set are placed in the out-of-bag (OOB) set (OOB set size is ~ N/3); (ii) the best split by 

CART algorithm
20

 among the m randomly selected descriptors from the entire pool in 

each node is chosen. Value of m is just one tuning parameter for which RF models are 

sensitive; (iii) each tree is then grown to the largest possible extent. There is no pruning. 

Prediction of out-of-bag set is made but each tree predicts values only for compounds 

which are not included into training set of that tree (for OOB set only). Since RF 

possesses its own reliable statistical characteristics (based on OOB set prediction) which 

could be used for validation and model selection, no cross-validation has been 

performed
18

. Thus, the final model is chosen by lowest error for prediction of OOB set 

and only after that resulting model was applied for blind prediction of external test 

set/fold compounds. 
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2.5. Support Vector Machines (SVM) 

The description of the original SVM algorithm could be found in many publications.
21

 

Briefly, molecular descriptors are first mapped onto a high dimensional feature space 

using various kernel functions. Then, SVM finds a separating hyperplane with the 

maximal margin in this high dimensional space in order to separate compounds with 

different activities. Models built with this machine learning technique allow the 

prediction of a target property using a set of descriptors solely calculated from the 

structure of a given compound. In this study, we used the WinSVM program developed 

in our group on the basis of the open-source libSVM package. The WinSVM program 

provides users with a graphical interface to prepare input data; split datasets into training 

and test sets; set up parameters for SVM grid calculations, including iterative and 

simultaneous grid optimization of SVM parameters; launch and follow calculation 

progress via a powerful graphical interface; select models with the best prediction 

accuracy for both training and internal test sets; and to apply them to the external 

evaluation set as an ensemble consensus model. The program also allows one to visualize 

molecular structures and various plots, making the use of SVM easier and more 

appropriate for QSAR modeling in order to obtain robust and predictive models and 

apply them to virtual libraries. WinSVM is freely available for academic laboratories 

from the following web site: http://www.unc.edu/~fourches/. 

 

2.6. MedusaDock  

The MedusaDock software
22

 was used to generate and score all ligand-receptor binding 

poses for the different CSAR targets. MedusaDock performs conformational sampling of 
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both ligand and receptor side chains simultaneously and synergistically. Details of the 

docking method can be found elsewhere.
8,23

 Briefly, a library of ligand rotamers is 

generated in a stochastic manner “on the fly”: ligand conformations are explored by 

random variation of ligands’ rotatable angles and excluding those conformations that 

feature atomic clashes. The docking protocol involves two steps. First, a representative 

set of ligand conformations is generated by clustering the stochastic library of rotamers. 

Each representative conformation is rapidly fitted into a “smoothed” receptor pocket by 

disabling the van der Waals repulsion between the ligand and the receptor side chains and 

subsequent rigid-body docking. Second, fine-docking is performed from each of the 

coarsely-docked poses, where the binding pose is minimized by iterative repacking of the 

rotamers of ligand and receptor side chains as well as ligand rigid-body minimization. In 

the second fine-docking step, the van der Waals repulsions between ligand and receptor 

side chains are included. The MedusaScore scoring function was utilized to guide the 

docking.
23

 

 

3. Results and Discussion 

3.1. Presence of CSAR duplicates in the ChEMBL modeling set 

First, for each target, we used ISIDA/Duplicates software to search for structural 

duplicates between CSAR ligands and the compounds retrieved from the ChEMBL 

database. We were not expecting to find any duplicate compounds assuming that none of 

the "blind set" CSAR ligands were supposed to be in the public domain already. 

Surprisingly, we identified several CSAR ligands that were indeed present in the 
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ChEMBL sets with known experimental affinities for the targets of interest. Results are 

summarized in Table 3.  

In total, six duplicates were found in the CHK1 dataset: 5 out of 6 compounds 

were CHK1 inhibitors with pIC50 ranging from 7.60 (ChEMBL401274) to 8.80 

(ChEMBL245796). The sixth compound (ChEMBL396034) was annotated as being 

inactive (pIC50 = 4.77). Only one duplicated structure was identified for both the UK 

dataset (CSAR_UK_18 with ChEMBL319264) and the ERK2 dataset (CSAR_ERK2_30 

with ChEMBL220320).  

 When submitting our prediction results to CSAR organizers, we enclosed this list 

of structural duplicates and a letter underlining that (i) some CSAR compounds and their 

supposedly unknown experimental activities were indeed present in the public domain 

and thus could potentially bias the results of the overall benchmark, (ii) simple methods 

such as similarity search can easily identify them, and (iii) our group honestly 

acknowledged that we knew the experimental values for those duplicate compounds and 

thus we advocated for the removal of those compounds from the CSAR ligand set in 

order to calculate unbiased statistics between the different participants. Although these 

ligands were present in the training sets we used to develop models, our group submitted 

only the values obtained from the 5-fold external cross-validation when these compounds 

were blindly predicted. 

 Later when the experimental activities of all CSAR ligands were revealed, we 

indeed observed their perfect agreement with the values retrieved from the ChEMBL 

database (see Table 3). 
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3.2. Prediction performance of QSAR models 

QSAR modeling results are given in Table 4. Models built using the SiRMS fragment 

descriptors and Random Forests afforded reasonable prediction performances evaluated 

by Spearman rank correlation ρ ranging from 0.78 (CHK1) to 0.85 (UK). When 

considering models' applicability domains, the reliability of RF predictions increased (up 

to ρ=0.89 for UK) but the coverage decreased, i.e., ca. 25% of the compounds had to be 

excluded due to the model applicability domain. 

 The prediction power of SVM models based on Dragon descriptors was slightly 

lower than that of RF models with ρ ranging from 0.77 (CHK1) to 0.84 (UK). In 

particular, ERK2 predictions were less accurate with R
2
 going down from 0.71 (RF) to 

0.62 (SVM). With applicability domain, ranking accuracy of SVM models were ranging 

from ρ= 0.72 (ERK2) to 0.86 (UK). 

In addition to the individual RF and SVM models, we also explored the predictive 

power of the simple consensus prediction where activities for external compounds were 

predicted as simple arithmetic means of predictions made with RF and SVM models. 

Obtained results showed that in most cases, with or without taking into account models’ 

applicability domain, the consensus model was consistently achieving higher reliability 

compared to any of the individual QSAR models. For instance, the modeling results 

obtained for UK were as follows: without applicability domain filtering, RF models 

afforded very good performance (ρ = 0.85, R
2
 = 0.69) as well as SVM models (ρ = 0.84, 

R
2
 = 0.68). The consensus model improved the accuracy reaching up to ρ = 0.87 and even 

ρ = 0.88 taking into account the applicability domain. Importantly, the coverage of the 

consensus is significantly boosted from 71-75% (individual SVM and RF models) up to 
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88%. This result means that more compounds were predicted correctly compared to 

individual QSAR models. 

  

3.3. Application of QSAR models to CSAR Ligands 

 The results of activity prediction for CSAR ligands are given in Table 5. To 

match the ranking metric used by the organizers, ranking performance was evaluated 

using the Spearman correlation coefficient ρ expressing the ranking accuracy of ligands 

by comparing the ligands’ rank orders based on model's predicted potency (pKi or pIC50 

depending on the target) with the actual experimental rank provided by the CSAR 

organizers.
1
 As discussed below, model predictive accuracy was evaluated both for all 

ligands as was stipulated by the CSAR challenge organizers as well for ligands found 

within the AD of QSAR models only to follow our standard modeling workflow (see 

Methods). 

 When predicting all ligands in the absence of any AD, the QSAR models afforded 

relatively high accuracy for UK ligands (ρ= 0.77, n = 20) and lower accuracies for ERK2 

(ρ= 0.60, n = 39) and CHK1 (ρ= 0.55, n = 45) ligands (Table 5; QSAR_no_AD).  

Independently, we have employed an ad hoc scheme to make predictions for all 

compounds when using the respective AD thresholds for individual RF and SVM models. 

Thus, for compounds found either within or outside of the AD of the individual models 

the predicted activities were averaged whereas for compounds found within the AD of 

only one model the activity predicted by that model was used. As shown in Table 5, the 

prediction accuracy for this QSAR_AD model was similar to that for the QSAR_no_AD 

model.  
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In addition, we also made predictions for ligands within the models’ AD only, i.e., 

with reduced coverage of the CSAR datasets. Indeed, many CSAR ligands were found to 

be outside of the respective AD of either SVM or RF models. Certain ligands were even 

outside of the AD of both models: 14 compounds for UK, 8 compounds for ERK2, and 

13 compounds for CHK1. Only six out of 20 UK ligands were found to be within the AD 

of one of the models making it non-sensible to evaluate model prediction accuracy in this 

case. After removing compounds outside of the AD, the Spearman correlation 

coefficients between experimental and predicted ranks (QSAR_AD model) for the 

remaining CSAR compounds increased to 0.64 for both ERK2 (n=31, coverage = 79.5%) 

and CHK1 (n=32, coverage = 71.1%) datasets as compared to 0.59 and 0.55, 

respectively, when all compounds were considered (see Table 5). Thus, the effect of AD 

on prediction accuracy of QSAR models is dataset dependent. In one of the considered 

cases (UK), the default AD appears over-restrictive whereas in two other cases the use of 

AD slightly improves model accuracy but at the expense of reduced data coverage, which 

is typical for QSAR-based predictions. 

 Second, we analyzed the results obtained by using the MedusaDock scores for 

ranking the CSAR ligands. MedusaDock was as accurate as QSAR models for UK. 

However, the QSAR models were found to have twice as high predictive power than 

MedusaDock for ERK2 (ρ= 0.60 versus ρ= 0.31) and CHK1 (ρ= 0.55 versus ρ= 0.26).  

 Overall, we could make the following observations: (i) the “true” accuracy of 

QSAR models and MedusaDock for ranking CSAR ligands is slightly (UK) or 

significantly (CHK1) worse than the one found at the modeling and validation stages, (ii) 

ligand-based QSAR models performed better than computationally expensive molecular 
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docking, and (iii) QSAR models’ applicability domains in their current form do not 

significantly improve the overall prediction accuracy for the remaining compounds. 

 

3.4. Consensus scoring using QSAR predictions and MedusaDock 

As part of the exercise, we considered another type of consensus models including the 

predictions coming from both QSAR models and Medusa docking. Ranks for CSAR 

ligands predicted by the QSAR models (e.g., QSAR_no_AD) were added to the ranks 

predicted by Medusa docking. Then, the ligands were re-ranked based on these summed 

QSAR/Medusa ranks. The overall results are shown in Table 5. 

 The accuracy of QSAR/Medusa consensus predictions was higher than the 

accuracy reached by Medusa predictions for all three targets. This remark is particularly 

true for CHK1 and ERK2 for which QSAR/Medusa consensus model was found to be 

almost twice more predictive than Medusa alone: in the case of ERK2 for instance, 

ρ=0.48 compared to ρ=0.31 respectively. 

 Also we noticed that the QSAR/Medusa consensus predictions afforded higher 

ranking accuracy than individual QSAR models and MedusaDock only in the case of UK 

(ρ=0.79-0.82 versus ρ=0.76-0.78). Due to the higher ranking accuracy obtained by QSAR 

models over Medusa for both ERK2 and CHK1, this result was expected. 

  

3.5. Half success or half failure? 

The analysis of the results revealed the overall reliability of QSAR models to rank CSAR 

ligands from the most active to the most inactive, especially for UK. However, there is a 

significant portion of ligands that have been mispredicted by both QSAR and docking. 
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Among them, some compounds predicted to be active were confirmed as being weak 

active or inactive. In this section, we are giving some examples and some clues to 

improve our current approach based on what we learned in this exercise.    

 First, the results tend to contradict the general principle commonly trusted by the 

QSAR community posing that the bigger the modeling set is, the more predictive the 

model will be. In this CSAR benchmark, our largest modeling set included 1,215 

compounds for the CHK1 target. Although QSAR models developed using this large 

dataset afforded reasonable prediction power in the 5-fold external cross-validation 

procedure (Table 4), the set of 45 CSAR ligands tested towards CHK1 was the most 

difficult to annotate as shown by the results: Spearman ρ = 0.55 for QSAR models as 

compared to ρ = 0.59-0.78 for UK and ERK2, ρ = 0.26 for docking as compared to ρ = 

0.31-0.76 for UK and ERK2. Besides the ranking accuracy per se, the consensus QSAR 

model was indeed able to correctly predict 17 out of 21 CHK1 actives and 10 out of 24 

inactive compounds, but missed 14 false positives and 4 false negatives (sensitivity = 

0.81, specificity = 0.42, and balanced accuracy = 0.61 considering the activity threshold 

of pIC50 = 7). Out of these 18 mispredicted compounds, we should underline that 8 

compounds have their experimental pIC50 ranging from 6.5 to 7.7, which is very close to 

the activity threshold we used to separate active from inactive compounds.  

 The smallest modeling set (ERK2) included 48 compounds only. Nevertheless, 

QSAR models built for this small modeling set afforded relatively good prediction 

performance at the 5-fold cross-validation stage (R
2
=0.69, RMSE=0.62, and ρ=0.79) and 

reasonable reliability on CSAR ligands (ρ=0.60). As illustrated on Figure 1, the balanced 

accuracy is reaching 0.77 for the 39 CSAR ligands tested towards ERK2 using an affinity 
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threshold of pKi = 7 to distinguish active from inactive compounds. These results 

demonstrate once again the importance of the cross-validation procedures in the QSAR 

modeling workflow but also the fact that such procedures must involve the building and 

selection of QSAR models using the modeling sets only and a truly external validation 

with the test sets.  

 Second, the overall accuracy of 2D QSAR models was affected by the presence of 

large activity cliffs in both the modeling and the external sets of ligands. To illustrate this 

point, let’s consider again the example of ERK2 ligands and more precisely the 

CSAR_ERK2_1 compound. As shown in Figure 2, very similar structures to 

CSAR_ERK2_1 found in our modeling set are annotated as strong binders with pKi 

equal to 8.4 and above. It is thus not surprising that our QSAR models computed 

CSAR_ERK2_1’s affinity towards ERK2 to be approximately pKi = 6.9. However the 

experimental binding affinity has been determined to be 4.8 only. This perfectly 

corresponds to the case of activity cliffs.
24

 

 In Figure 2, we showed CSAR_ERK2_1 as well as two other compounds 

CSAR_ERK2_6 and CSAR_ERK2_9 that have not been assessed correctly by our QSAR 

models. Despite the fact that the QSAR model succeeded to correctly predict the 

increasing activity trend CSAR_ERK2_1 (pKi = 4.8) < CSAR_ERK2_6 (pKi = 6.1) < 

CSAR_ERK2_9 (pKi = 6.8), the model did calculate their binding affinities with 

∆pKipred-exp > 1.5 log units. Interestingly, the docking score obtained for CSAR_ERK2_1 

is relatively high (-42.2) meaning that the binding of the compound is predicted to be 

unfavorable. To provide the necessary context, MedusaDock scores were ranging from -

59.2 (very favorable docking) to -36.4 (unfavorable docking) for the ERK2 CSAR 
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ligands. As a result, this observation opens the way for defining new strategies to 

calculate consensus predictions between QSAR models and docking scores as well as 

identifying potential activity cliffs such as CSAR_ERK2_1. Simply summing up the 

ranks from QSAR models and docking scores as we did in this exercise does not seem to 

be the optimal workflow. On the contrary, using docking score thresholds to 

automatically discard some compounds from the predicted actives is more likely to avoid 

the prediction of false-positives such as CSAR_ERK2_1.  

 Third, based on the results presented in this study, there are some additional 

evidences how to complement structure-based predictions from ligand-based predictions. 

On Figures 3 and 4, we plotted the MedusaDock scores versus QSAR_no_AD 

predictions. The 2D/3D correlation reached R
2
 = 0.67 for UK and only 0.42 for CHK1. 

These values are indeed important to analyze because they measure the level of 

concordance between the two different modeling approaches for the CSAR ligands and 

can be computed without the knowledge of the experimental values of the compounds. 

The challenge is thus to find new ways to use these correlation plots for establishing rules 

to calculate a new type of 2D/3D consensus. Also, it seems logical that one way to assess 

the potential benefit of the 2D/3D consensus requires the calculation of their correlation 

coefficient for modeling set compounds (and thus there is a need for docking the 

modeling set compounds as well). 

 Fourth, compared to the other research teams who participated in the CSAR 

benchmarking, the reasonable prediction performances obtained by our QSAR models 

ranked our group in the top-10%. Moreover, our QSAR models occupied top-2 and top-3 

positions for ranking both CHK1 actives and inactives. Our models were ranked fifth for 
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ERK 2 prediction reliability. We have processed only three targets and the overall 

performance among all the targets cannot be estimated for our models, but based on the 

results for separate targets we can expect that our group was ranked among top-3 research 

teams.  

Overall, structure-based approaches may not be viewed as intuitively better or 

more predictive than ligand-based QSAR models and this CSAR benchmarking exercise 

serves to illustrate this point. It is well-known that correlation between docking scoring 

functions and experimental binding affinities is typically low
25

 or moderate
26

. 

Furthermore, as shown by our collaborators at UNC for the same CSAR sets
8
, structure-

based approaches (and MedusaDock especially) are accurate in generating native-like 

poses. However, as this study shows, the docking scores for those native-like poses do 

not correlate with experimental binding affinities well (Table 5) and thus do not allow a 

correct ranking. This observation highlights a known fact that different scoring functions 

are needed for predicting ligand poses versus predicting binding affinities. Lastly, we 

should stress that unlike universal scoring functions used in docking studies, QSAR 

models are specifically trained and selected towards a given target using a set of 

respective ligands with experimental activities. Thus, it may be underappreciated but not 

necessarily surprising that ligand-based QSAR models can, in fact, have better accuracy 

than most of the structure-based docking approaches in prognosticating target-specific 

ligand binding affinities. 
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4. Conclusions 

In this study, both structure-based (molecular docking) and ligand-based (QSAR models) 

approaches were used both independently and in the form of a 2D/3D consensus model to 

rank untested ligands based on their predicted potency. In this exercise of blind 

predictions, QSAR models developed with publicly-available experimental data extracted 

from the ChEMBL database were shown to outperform predictions obtained by several 

molecular docking approaches. These results confirmed that when QSAR models are 

rigorously derived using curated chemical datasets and statistically relevant procedures 

for model selection and validation, then their prediction power can be at least as accurate 

as computationally expensive structure-based docking. Our results also emphasized the 

validity of QSAR models as a critical component of a virtual screening platform. 

Moreover, we showed the potential benefits of using both QSAR and docking predictions 

altogether to assess and eventually override the presence of activity cliffs in the sets of 

ligands. However, in this particular CSAR benchmark we did not notice a dramatic boost 

in predictions’ accuracy using the current implementation of our QSAR/docking 

consensus model. We believe the CSAR benchmark represents a great initiative to 

honestly benchmark (i) structure-based scoring functions and docking software with each 

other as well as with (ii) ligand-based cheminformatics methods, whose prediction 

accuracy will continue to rise along with the increasing number of experimental data 

available in online repositories. 
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Table 1. List of approaches used in this study to rank CSAR ligands (see the text for 

more details). 

 

Type Name ID Description 

Ligand-based 

(2D) 

QSAR_no_AD 1 

Consensus QSAR model averaging 

RF/SiRMS and SVM/Dragon predictions 

without applicability domain filtering 

QSAR_AD 2 
Consensus QSAR model with 

applicability domain filtering 

Structure-

based (3D) 
MEDUSA 3 Molecular docking 

Consensus 

2D/3D  

QSAR_no_AD + 

MEDUSA 
4 Consensus between models 1 and 3 

QSAR_AD + 

MEDUSA 
5 Consensus between models 2 and 3 
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Table 2. CSAR targets, ligands, and related compounds found in the ChEMBL database.  

Target 

Potency 

measured 

as 

Number of 

CSAR ligands 

to rank 

Number of 

ChEMBL 

compounds 

before curation 

Number of 

ChEMBL 

compounds 

after curation 

Extracellular 

signal-regulated 

kinase (ERK2) 
pKi 39 91 48 

Urokinase (UK) pKi 20 828 668 

Checkpoint 

kinase (CHK1) 
pIC50 45 1450 1215 
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Table 3. List of CSAR compounds with identified structural duplicates retrieved in the 

ChEMBL database and their reported activities.  

 

CSAR compounds 

(experimental activity) 

ChEMBL compounds identical to CSAR 

compounds 

CSAR_chk1_1 

(CSAR pIC50=7.60) 

CHEMBL401274; pIC50=7.60 

4-(6,7-dimethoxy-2,4-dihydro-indeno[1,2-

c]pyrazol-3-yl)-phenol;  

CSAR_chk1_3 

(CSAR pIC50=8.30) 

CHEMBL248396; pIC50=8.30 

4-(6,7-dimethoxy-2,4-dihydro-indeno[1,2-

c]pyrazol-3-ylethynyl)-2-methoxy-phenol;  

CSAR_chk1_4 

(CSAR pIC50 = Not 

Reported) 

 
CHEMBL247396; pIC50=8.70 

 4-(6-imidazol-1-ylmethyl-7-methoxy-2,4-dihydro-

indeno[1,2-c]pyrazol-3-yl)-benzonitrile;  

CSAR_chk1_6 

(CSAR pIC50=8.80) 

CHEMBL245796; pIC50=8.80 

4'-(6,7-dimethoxy-1,4-dihydro-indeno[1,2-

c]pyrazol-3-yl)-biphenyl-4-ol;  

CSAR_chk1_13 

(CSAR pIC50=7.64) 

CHEMBL248010; pIC50=7.64 

4'-{6-[2-(5-ethyl-pyridin-2-yl)-ethoxy]-7-methoxy-

2,4-dihydro-indeno[1,2-c]pyrazol-3-yl}-biphenyl-

4-ol;  

CSAR_chk1_20 

(CSAR pIC50=4.80) 

CHEMBL396034; pIC50=4.77 

8-chloro-5,10-dihydro-dibenzo[b,e][1,4]diazepin-

11-one;  

CSAR_uk_18 

(CSAR pKi=6.30) 

CHEMBL319264; pKi=6.35 

8-Amino-naphthalene-2-carboxamidine;  

CSAR_erk2_30 

(CSAR pKi=7.10) 

CHEMBL220320; pKi=7.07 

N-benzyl-4-(4-(3-chlorophenyl)-1H-pyrazol-3-yl)-

1H-pyrrole-2-carboxamide;  
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Table 4. Statistical characteristics of QSAR models for CSAR datasets assessed by 5-

fold external validation.  

 

Method Descriptor Target 
NO AD WITH AD 

R
2
 RMSE 

Spearman 

ρ 
R

2
 RMSE 

Spearman 

ρ 
Coverage 

RF SiRMS 
CHK1 

(n = 1215) 

0.64 0.77 0.78 0.72 0.66 0.85 75% 

SVM Dragon 0.64 0.76 0.77 0.65 0.73 0.81 72% 

QSAR_CONSENSUS 0.67 0.74 0.79 0.68 0.71 0.83 87% 

          

RF SiRMS 
ERK2 

(n = 48) 

0.71 0.62 0.80 0.69 0.56 0.79 75% 

SVM Dragon 0.62 0.68 0.77 0.59 0.65 0.72 73% 

QSAR_CONSENSUS 0.69 0.62 0.79 0.67 0.59 0.76 90% 

          

RF SiRMS 
UK 

(n = 668) 

0.69 0.66 0.85 0.77 0.53 0.89 75% 

SVM Dragon 0.68 0.72 0.84 0.70 0.64 0.86 71% 

QSAR_CONSENSUS 0.71 0.68 0.87 0.73 0.61 0.88 88% 
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Table 5. Spearman correlation coefficient (ρ) between experimental and predicted ranks 

of CSAR ligands. 

Type Ranking Methods 

ρ 

UK 
(n=20) 

ERK2 
(n=39) 

CHK1 
(n=45) 

2D 
QSAR_no_AD 0.77 0.60 0.55 

QSAR_AD 0.78 0.59 0.55 

3D MEDUSA 0.76 0.31 0.26 

2D/3D 

QSAR_no_AD + 

MEDUSA 
0.79 0.48 0.45 

QSAR_AD + 

MEDUSA 
0.82 0.50 0.45 
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Figure 1. Experimental versus predicted binding affinities (pKi) for ERK2 CSAR ligands 

(n = 39) based on QSAR_no_AD model’s predictions. Correctly predicted ERK2 binders 

(pKi ≥ 7) are colored in green, whereas correctly predicted non-binders are colored in red 

(balanced accuracy = 0.77). Mispredicted compounds are colored in black. 
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Figure 2. Structural neighbors of the CSAR_ERK2_1 compound retrieved in the 

ChEMBL database. 
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Figure 3. MedusaDock scores plotted versus QSAR_no_AD pKi predictions for the 20 

CSAR ligands towards UK (R
2
 = 0.67). UK binders (pKi ≥ 7) are colored in green, 

whereas non-binders are colored in red.  
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Figure 4. MedusaDock scores plotted versus QSAR_no_AD pKi predictions for the 45 

CSAR ligands towards CHK1 (R
2
 = 0.42). CHK1 inhibitors (pIC50 ≥ 7) are colored in 

green, whereas inactive compounds are colored in red. 

 

 

 

 

 

 

 

 

 

 

Page 33 of 34

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



34 

 

Table of Content Graphic 

  

Page 34 of 34

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/ci400216q&iName=master.img-039.jpg&w=207&h=110
http://pubs.acs.org/action/showImage?doi=10.1021/ci400216q&iName=master.img-039.jpg&w=207&h=110

