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2Multiscale Modeling of RNA Structure
3and Dynamics

4Feng Ding and Nikolay V. Dokholyan

5Abstract We have developed a multiscale approach for RNA folding using dis-
6crete molecular dynamics (DMD), a rapid conformational sampling algorithm. We
7use a coarse-grained representation to effectively model RNA structures. Bench-
8mark studies suggest that the DMD-based RNA model is able to accurately fold
9small RNA molecules (<50 nucleotides). However, the large conformational space
10and force field inaccuracies make it difficult to computationally identify the native
11states of large RNA molecules. We devised an automated modeling approach for
12prediction of large and complex RNA structures using experimentally derived
13structural constraints and tested it on several RNA molecules with known experi-
14mental structures. In all cases, we were able to bias the DMD simulations to the
15native states of these RNA molecules. Therefore, a combination of experimental
16and computational approaches has the potential to yield native-like models for the
17diverse universe of functionally important RNAs, whose structures cannot be
18characterized by conventional structural methods.

199.1 Introduction

20RNA molecules play a wide range of functional roles in gene expression, from
21regulating transcription and translation [e.g., riboswitch regulator motifs (Edwards
22et al. 2007)] to decoding genetic messages (tRNA), catalyzing mRNA splicing
23[spliceosome RNA or self-splicing introns (Vicens and Cech 2006)] and protein
24synthesis (rRNA). Knowledge of the underlying RNA structure in these and many
25other molecules is a fundamental prerequisite to a complete understanding of RNA
26function. Methods such as X-ray crystallography and NMR spectroscopy offer critical
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27 insight into the details of RNA structure–function relationships. However, many
28 RNAs contain both structured and functionally important but flexible elements.
29 These RNAs are not amenable to structure determination in their intact forms by
30 crystallography or NMR. Hence, molecular modeling of RNA to predict three-
31 dimensional structure and dynamics is crucial for our understanding ofRNA functions.
32 Currently, RNA folding tools focus mainly on predicting RNA secondary
33 structure (Hofacker 2003; Mathews 2006; Zuker 2003). Using a dynamic program-
34 ming approach (Eddy 2004), secondary structures are inferred by scoring nearest-
35 neighbor stacking interactions with adjacent base pairs (Mathews 2006). These
36 RNA secondary structure prediction methods play an important role in the current
37 study of RNA. However, in order to model the tertiary structure of RNA molecules,
38 it is necessary to explicitly model RNA in 3D. Cao and Chen designed a simplified
39 diamond-lattice model for predicting folded structure and thermodynamics of RNA
40 pseudoknots (Cao and Chen 2005, 2006). This approach quantitatively predicts the
41 free energy landscape for sequence-dependent folding of RNA pseudoknots, in
42 agreement with experimental observations (Cao and Chen 2005, 2006). However,
43 due to lattice constraints and the dynamic issues associated with predefined Monte
44 Carlo moves (Baumgartner 1987), off-lattice models are necessary to accurately
45 model RNA 3D structure.
46 Computational tools for manually constructing RNA models have been devel-
47 oped for RNA 3D structure prediction (Shapiro et al. 2007). These methods use
48 comparative sequence analysis to manually construct 3D models, with or without
49 reference to a known, homologous 3D structure. Their accuracy is enhanced by use
50 of experimental probes of secondary or tertiary structure and libraries of modular
51 3D motifs (Jossinet and Westhof 2005; Major et al. 1991, 1993; Massire et al. 1998;
52 Massire and Westhof 1998; Shapiro et al. 2007; Tsai et al. 2003). Recently,
53 significant progress has been made toward ab initio modeling of RNA 3D structures
54 (Das and Baker 2007; Ding et al. 2008; Parisien and Major 2008). These studies
55 show that starting only with sequence, it is possible to predict the structures of some
56 small RNA motifs with atomic-level accuracy. However, as RNA length increases,
57 the conformational space increases exponentially and the inherent inaccuracies of
58 the force field accumulate, limiting the ability of current methods to predict the
59 structures of large RNAs automatically. De novo prediction of large RNA
60 structures with nontrivial tertiary folds from sequence alone remains beyond the
61 realm of current ab initio algorithms.
62 We have developed a multiscale approach (Ding and Dokholyan 2005) for RNA
63 modeling based on a coarse-grained RNA model for discrete molecular dynamics
64 (DMD) simulations (Ding et al. 2008). DMD is a special type of molecular dynamics
65 simulation in which pairwise interactions are approximated by stepwise functions.
66 This approximation enables DMD to sample conformational space more efficiently
67 than traditional molecular dynamics simulations (Dokholyan et al. 1998). Using the
68 coarse-grained RNAmodel with DMD simulations, we were able to accurately fold a
69 set of 150 small RNA molecules (<50 nt) within 6 Å (a majority within 4 Å) to their
70 native states (Ding et al. 2008). To solve the folding problem of large RNAmolecules
71 with complex tertiary 3D structures, we proposed to incorporate experimentally
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72derived structural information into our structure determination protocol. Long-range
73constraints for RNA modeling can be inferred from a variety of biochemical and
74bioinformatic techniques, ranging from chemical footprinting and cross linking to
75sequence covariation (Gutell et al. 1992; Juzumiene et al. 2001; Michel and Westhof
761990; Ziehler and Engelke 2001). Experimental constraints derived from these bio-
77chemical and bioinformatics techniques are generally of lower than atomic resolution,
78but can be readily incorporated into the coarse-grained RNA model for structure
79determination. The all-atom RNA model can then be reconstructed from the coarse-
80grained structural model.
81First, we will describe our coarse-grained representation of RNA models for
82DMD simulations. Then, we will describe and evaluate the applications of the
83DMD–RNA procedure to ab initio folding of a set of small RNA models and
84structure determination using experimental constraints.

859.2 Coarse-Grained RNA Modeling Using Discrete Molecule
86Dynamics

87We use DMD as the conformational sampling engine. A detailed description of the
88DMD algorithm can be found elsewhere (Dokholyan et al. 1998; Rapaport 2004;
89Zhou and Karplus 1997). The difference between discrete molecular dynamics and
90traditional molecular dynamics is in the interaction potential functions. Interatomic
91interactions in DMD are governed by stepwise potential functions (Fig. 9.1a).
92Neighboring interactions (such as bonds, bond angles, and dihedrals) are modeled
93by infinitely high square well potentials (Fig. 9.1b). By approximating the continu-
94ous potential functions with step functions of pairwise distances, DMD simulations
95are reduced to event-driven (collision) molecular dynamics simulation. In a DMD
96simulation, atoms move with constant velocity until they collide with another atom.
97As soon as the potential of interaction between the two atoms changes (i.e., the
98pairwise distance is at the step of the stepwise potential function), the velocities of
99the two interacting atoms change instantaneously (Fig. 9.1a). These velocity
100changes are required to conform to the conservation laws of energy, momentum,
101and angular momentum. Each such collision is termed an “event.” The sampling
102efficiency of DMD over traditional MD is mainly due to rapid processing of
103collision events and localized updates of collisions (only colliding atoms are
104updated at each collision). In the limit of infinitesimally small steps, the discrete
105step function approaches the continuous potential function, and DMD simulations
106become equivalent to traditional molecular dynamics.
107We approximate the single-stranded RNA molecule as a coarse-grained “beads-
108on-a-string” polymer with three beads representing each nucleotide, one for sugar (S),
109one for phosphate (P), and one for nucleotide base (B) (Fig. 9.2a). The P and S beads
110are positioned at the centers of mass of the corresponding phosphate group and the
1115-atom ring sugar, respectively. For both purines (adenine and guanine) and
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112 pyrimidines (uracil and cytosine), we represent the base bead (B) as the center of the
113 6-atom ring. The neighboring beads along the sequence, whichmay representmoieties
114 that belong to the same or a neighboring nucleotide, are constrained tomimic the chain
115 connectivity and local chain geometry (Fig. 9.2a). Types of constraints include
116 covalent bonds (solid lines), bond angles (dashed lines), and dihedral angles
117 (dotted–dashed lines). The parameters for bonded interactions mimic the folded
118 RNA structure and are derived from a high-resolution RNA structure database
119 (Murray et al. 2003) (Table 9.1). Nonbonded interactions are crucial to model the
120 folding dynamics of RNA molecules. In our model, we include base-pairing
121 (Watson–Crick pairs of A–U and G–C and Wobble pair of U–G), base-stacking,
122 short-range phosphate–phosphate repulsion, and hydrophobic interactions, which
123 are described in the following section with the parameterization procedure.
124 Base Pairing. Two base-paired nucleotides have bases facing each other with the
125 corresponding sugar and base beads aligned linearly. We use the “reaction” algorithm
126 to model the orientation dependence of base-pairing interactions. The details of the
127 algorithm can be found in (Ding et al. 2003). Briefly, to model the orientation
128 dependence, we introduce auxiliary interactions in addition to the distance-dependent
129 interactions between hydrogen bond donor and acceptor atoms (Fig. 9.2b). For
130 example, when the two nucleotides (e.g., A–U, G–C, or U–G, represented as Bi and
131 Bj in Fig. 9.2b) approach the interaction range, we evaluate the distances between SiBj

132 and SjBi, which define the relative orientations of these two nucleotides. A hydrogen
133 bond is allowed to form only when the distances fall within predetermined ranges. A
134 schematic of the auxiliary interaction potential is shown in Fig. 9.2c, and the
135 corresponding interaction parameters are listed in Table 9.2.
136 Hydrophobic Interactions and Overpacking. Buried inside the double-helix, the
137 planar surface of bases are hydrophobic in nature. We include a weak attraction
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Fig. 9.1 Discrete molecular dynamics simulations. (a) Schematic of the DMD potential. The
stepwise function used in DMD is the approximation of the continuous function in traditional
molecular dynamics. The insert depicts the collision of two atoms with masses of mi and mj at the
initial position of ri and rj, respectively. The two atoms move with constant velocities (v) until they
meet at distance of Rij. (b) Schematic of the potential energy of bonds in DMD. The atom pairs
remain within the distance range during the simulation
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138between all the base beads. Due to the coarse-graining feature of our model, the
139assignment of attraction between bases results in overpacking (e.g., the symmetri-
140cally attractive interactions tend to form close packing). In order to avoid the
141artifact of overpacking, we first evaluate the packing observed in experimental
1423D structures (http://ndbserver.rutgers.edu). We compute for each base the number
143of neighboring bases within a cutoff distance of 6.5 Å. The histogram of the number
144of neighbors is shown in Fig. 9.2d. Indeed, we find that the average number of
145neighbors is much smaller than that of close packing, 12. In order to avoid unreal-
146istic close-packing due to the coarse-graining process, we introduce an effective
147energy term to penalize overpacking of bases:

Eoverpack ¼ dEY nc " nmaxð Þ; (9.1)

Fig. 9.2 Coarse-grained structural model of RNA employed in DMD simulations. (a) Three
consecutive nucleotides, indexed i"1, i, i + 1 are shown. The S, P, and B symbols correspond to
loci of sugar, phosphate, and base beads in the RNA, respectively. Covalent interactions are shown
as thick lines, angular constraints as dashed lines, and dihedral constraints as dashed–dotted lines.
Additional steric constraints are used to model base stacking. (b) Hydrogen bonding in RNA base
pairing. The base-pairing contacts between bases Bi"1:Bj+1 and Bi:Bj are shown in dashed lines. A
reaction algorithm is used (see Methods) for modeling the hydrogen-bonding interaction between
specific nucleotide base pairs. (c) Schematic of the potential function for the auxiliary base-pairing
interactions. (d) Histogram of the number of neighboring bases within a cutoff of 6.5 Å
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148 where YðxÞ is a step function,

YðxÞ ¼ x x > 0
0 x % 0

!
; (9.2)

149 nc is number of contacts, and nmax is the maximum number of contacts; dE is the
150 repulsion coefficient. Based on the histogram of the number of base neighbors
151 (Fig. 9.2d), we assign the value 4.2 for nmax and 0.6 kcal/mol for dE.
152 Base Stacking. To model stacking interactions, we assume that each base bead
153 makes no more than two base–base stacking interactions and that three consecutively
154 stacked base beads align approximately linearly. To determine the stacking interaction
155 range between base beads, we compute center-to-center distances between base beads
156 fromknownRNA structures.We find that distribution depends on base type (purine or
157 pyrimidine) and identify stacking cutoff distances as 4.65 Å between purines, 4.60
158 between pyrimidines, and 3.80 Å between purine and pyrimidine. To approximately
159 model the linearity of stacking interactions, two bases that form a stacking interaction
160 to the same base are penalized for approaching closer than 6.5 Å. As a result, these
161 three bases effectively define an obtuse angle. Next, we discuss the energy parameter-
162 ization of base-stacking, base-pairing, and hydrophobic interactions.
163 Parameterization of Base-Pairing, Base-Stacking, andHydrophobic Interactions.
164 In order to determine the pairwise interaction parameters for stacking and hydropho-
165 bic interactions for all pairs of a base, we decomposed the sequence-dependent free
166 energy parameters of the individual nearest-neighbor hydrogen bond model (INN-
167 HB) (Mathews et al. 1999). We assume that the interaction of neighboring base pairs
168 in INN-HB is the sum of all hydrogen-bond, base-stacking, and hydrophobic
169 interactions. In a nearest neighboring base-pair configuration (Fig. 9.1), Bi+1 and Bi

170 (Bj"1 and Bj) on one strand usually stack on top of each other. However, if both bases
171 Bi+1 and Bj are purines, we found that they tend to stack instead. The distance
172 between bases Bi and Bj"1 is usually greater than the cutoff distance of 6.5 Å for
173 hydrophobic interactions. Therefore, we used the following equations to estimate the
174 strength of pairwise interactions, where the first equation applies when Bi+1, Bj are
175 both purines and the second equation applies otherwise:

E
50BiBiþ130
30BjBj"150

" #
¼

$
EHB
BiBj

þ EHB
Biþ1Bj"1

%
þ EStack

BjBiþ1
þ Ehydrophobic

BiBiþ1
þ Ehydrophobic

BjBj"1
; (9.3)

E
50BiBiþ13

0

30BjBj"15
0

" #
¼

$
EHB
BiBj

þ EHB
Biþ1Bj"1

%
þ EStack

BiBiþ1
þ Estack

BjBj"1
þ Ehydrophobic

Biþ1Bj
: (9.4)

176 Here, Estack, EHB, and Ehydrophobic are the interaction strengths of base-stacking,
177 base-pairing, and hydrophobic interactions, respectively. Given the experimentally
178 tabulated energies between all possible neighboring base pairs (Mathews et al. 1999),
179 we were able to determine values of Estack, EHB, and Ehydrophobic that are consistent
180 with experimental measurements using singular value decomposition (Khatun et al.
181 2004; AU1Press et al. 2002). The interaction parameters are listed in Tables 9.2 and 9.3.
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Table 9.1 The averages and
standard deviations of the
bonded atom pairs

Bonded atom pair Distance range (Å) t1:1

Pi Si 4.55 ' 0.09 t1:2

Si Pi+1 4.10 ' 0.07 t1:3

Si Ai 4.85 ' 0.15 t1:4

Si Ui 3.74 ' 0.08 t1:5

Si Gi 4.81 ' 0.14 t1:6

Si Ci 3.70 ' 0.13 t1:7

Pi Pi+1 6.25 ' 0.95 t1:8

Si Si+1 5.72 ' 0.45 t1:9

Pi Ai 7.45 ' 0.45 t1:10

Pi Ui 5.57 ' 0.37 t1:11

Pi Gi 7.43 ' 0.43 t1:12

Pi Ci 5.57 ' 0.37 t1:13

Ai Pi+1 7.25 ' 0.42 t1:14

Ui Pi+1 6.40 ' 0.20 t1:15

Gi Pi+1 7.20 ' 0.43 t1:16

Ci Pi+1 6.40 ' 0.20 t1:17

Pi-1 Si 9.25 ' 0.95 t1:18

Si-1 Pi+1 8.96 ' 0.44 t1:19

Ai-1 Si 5.68 ' 0.68 t1:20

Ui-1 Si 6.38 þ 0.73 t1:21

Gi"1 Si 5.68 ' 0.68 t1:22

Ci"1 Si 6.38 ' 0.73 t1:23

Si"1 Ai 7.25 ' 0.60 t1:24

Si"1 Ui 5.66 ' 0.54 t1:25

Si"1 Gi 7.25 ' 0.60 t1:26

Si"1 Ci 5.66 ' 0.54 t1:27

t1:28All the bonds, angles, and dihedrals are effectively modeled using
a bonded interaction in the DMD simulations (Fig. 9.1b). A, U, G,
and C corresponds to four types of bases (B)

t2:1Table 9.2 The parameters for base pairing, modeled by hydrogen bonds between A–U, G–C,
and U–G

Atom pair dmin (Å) d0, (Å) d1, (Å) dmax (Å) t2:2

Ci–Gj base pair t2:3

Si Gj 7.70 8.08 8.63 9.00 t2:4

Ci Sj 9.74 10.10 10.53 10.82 t2:5

Ai–Uj base pair t2:6

Si Uj 9.76 9.94 10.50 10.76 t2:7

Ai Sj 7.72 7.92 8.82 9.00 t2:8

Ui–Gj base pair t2:9

Si Gj 7.00 7.44 8.24 8.70 t2:10

Ui Sj 9.50 10.25 10.80 11.35 t2:11

t2:12The details of the DMD algorithm for the hydrogen bond can be found in Ding et al. (2003). The
schematic interaction potential is shown in Fig. 9.2c. The hydrogen bond strengths, EHB, for A–U,
G–C, and U–G are 0.5, 1.2, and 0.5 Kcal/mol, respectively. The interaction potential between the
donor and acceptor is "EHB
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182 Loop Entropy. Loop entropy plays a pivotal role in RNA folding kinetics and
183 thermodynamics (Tinoco and Bustamante 1999). Hence, RNA folding prediction
184 methods should take this entropic effect into account, either implicitly as in all-
185 atomMD simulations (Sorin et al. 2004) or explicitly as in Monte Carlo or dynamic
186 programming methods (Mathews 2006; Rivas and Eddy 1999). However, the
187 reduction of degrees of freedom in our simplified RNA model causes entropy to
188 be underestimated in DMD simulations. For example, we often observe formation of
189 large loops that traps RNA molecules in nonnative conformations for significant
190 simulation times. To overcome such artifacts arising from the coarse-graining pro-
191 cess, we developed a simple modification of DMD simulation to model loop entropy
192 explicitly. We use the free energy estimations for different types of loops, including
193 hairpin, bulge, and internal loops (Mathews et al. 1999). Loop free energies were
194 obtained from experimental fitting for small loops and extended to arbitrary lengths
195 according to polymer theory. We compute the effective loop free energy in DMD
196 simulations based on the set of base pairs formed in simulations. Upon the formation
197 or breaking of each base pair, the total loop free energy changes according to the
198 changes in either the number or size of loops. We estimate the changes in loop free
199 energy, DGloop, for each base pair formed during the simulation and determine the
200 probability of forming such a base pair by coupling to a Monte Carlo procedure using
201 a Metropolis algorithm with probability p ¼ exp("bDGloop). If the base pair is
202 allowed to form stochastically, the particular base pair will form only if the kinetic
203 energy is sufficient to overcome the possible potential energy difference before and
204 after the base-pair formation. Upon breaking of a base pair, the stochastic procedure
205 is not invoked since base-pair breakage is always entropically favorable. The break-
206 ing of a base pair is only governed by the conservation of momentum, energy, and
207 angular momentum before and after the base-pair breakage.

t3:1 Table 9.3 The stacking and hydrophobic interaction strengths, expressed in kcal/mol units

EStack AU UA GC CG GU UGt3:2

AU "0.45 "0.50 "0.75 "0.95 "0.42 "0.70t3:3

UA "0.50 "0.40 "0.55 "0.60 "0.35 "0.35t3:4

GC "0.75 "0.55 "0.81 "0.95 "0.48 "0.92t3:5

CG "0.95 "0.60 "0.95 "1.10 "0.47 "0.51t3:6

GU "0.42 "0.35 "0.48 "0.47 "0.52 0.62t3:7

UG "0.70 "0.35 "0.51 "0.51 0.62 "0.44t3:8

EHydrophobic AU UA GC CG GU UGt3:9

AU "0.25 "0.40 "0.40 "0.50 "0.25 "0.35t3:10

UA "0.40 "0.30 "0.25 "0.25 "0.25 "0.25t3:11

GC "0.40 "0.25 "0.25 "0.45 "0.25 "0.41t3:12

CG "0.50 "0.25 "0.45 "0.50 "0.25 "0.41t3:13

GU "0.25 "0.25 "0.25 "0.25 "0.30 0.25t3:14

UG "0.35 "0.25 "0.41 "0.41 0.25 "0.25t3:15

t3:16 The subscript indicates that the base bead is paired. For example, AU is a base bead A that has been
paired with a U bead. The cutoff distance for stacking interactions is 6.0 Å. The cutoff distance for
hydrophobic interactions is 6.5 Å. The hardcore distance between all beads is set as 3.0 Å
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208The total potential energy, E, is obtained by adding all interaction terms, as given
209in (9.5):

E ¼ EBonded þ EHbond þ EStack þ EHydrophobic þ Eoverpacking þ Gloop; (9.5)

210and is used to perform DMD simulations of RNA molecules. The energy landscape
211of RNA molecules is very rugged with a vast number of local minima due to the
212high degeneracy of nucleotide types (only 4 compared to the 20 different amino
213acids found in proteins). In order to efficiently sample the conformational space of
214RNAs, we utilize the replica-exchange sampling scheme (Okamoto 2004; Zhou
215et al. 2001).
216Replica Exchange DMD. In replica exchange computing, multiple simulations
217or replicas of the same system are performed in parallel at different temperatures.
218Individual simulations are coupled through Monte Carlo-based exchanges of simu-
219lation temperatures between replicas at periodic time intervals. For two replicas,
220i and j, maintained at temperatures Ti and Tj and with energies Ei and Ej,
221temperatures are exchanged according to the canonical Metropolis criterion with
222exchange probability p, where p ¼ 1 if D ¼ 1=kBTi " 1" kBTj

& '
Ej " Ei

& '
% 0,

223and p ¼ exp "Dð Þ, if D>0. For simplicity, we use the same set of eight temperatures
224in all replica exchange simulations: 0.200, 0.208, 0.214, 0.220, 0.225, 0.230, 0.235,
225and 0.240. The temperature is in the abstract unit of kcal/(mol kB). Note that we
226approximate the pairwise potential energy between coarse-grained beads with the
227experimentally determined free energy of nearest neighboring base pairs, instead of
228the actual enthalpy. As a result, the temperature does not directly correspond to
229physical temperatures. In DMD simulations, we maintain constant temperature
230using an Anderson thermostat (Andersen 1980).
231Since the DMD code is highly optimized, we have found that the computa-
232tional timescales linearly with respect to the system size. The folding simulation
233of a 50-nucleotide-long RNA sequence (median size of RNA chains in the
234sample) for 2 ( 106 DMD simulation time units takes approximately 7 h of
235total wall-clock time, utilizing eight 2.33-GHz Intel Xeon compute nodes.

2369.3 Ab Initio Folding of Small RNA Molecules

237For each RNA molecule, we initially generated a linear conformation using the
238nucleotide sequence alone. Starting from this extended conformation, we
239performed replica exchange simulations at different temperatures as described
240above. From the simulation trajectories, we extracted sampled RNA conforma-
241tional states, including the lowest energy state, the folding intermediate state, and
242the corresponding thermodynamic data. In Fig. 9.3, we illustrate the folding
243trajectory of one of the replicas for a turnip yellow mosaic virus (TYMV)
244pseudoknot (PDB ID: 1A60). An RNA pseudoknot structure has nonnested base
245pairing and minimally comprises base pairing between a loop region and a down-
246stream RNA segment. Pseudoknots serve diverse biological functions, including
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247 formation of protein recognition sites that mediate replication and translational
248 initiation, participation in self-cleaving ribozyme catalysis, and induction of
249 frameshifts in translation of mRNA by ribosomes (Staple and Butcher 2005). For
250 example, 1A60 is composed of a 50-stem and a 30-pseudoknot (Fig. 9.3c). From the
251 simulation trajectory (Fig. 9.3), we observe folding of the RNA model within 5 Å
252 root-mean-square deviation (RMSD) to the native state, and the lowest RMSD from
253 the simulations is 2.03 Å. The lowest potential energy conformation, computed
254 across all replicas using the effective free energy function in (9.5), has all native
255 base pairs formed and an RMSD of 4.58 Å to the native state. Interestingly, we find
256 that during the folding process the RNA molecule samples a stable folding inter-
257 mediate state (Fig. 9.3a, b). The intermediate state forms a 50-stem and a partially
258 folded 30-pseudoknot with one of the stems. Our identified folding intermediate
259 state is consistent with the NMR studies of the solution structures of the TYMV
260 pseudoknot and its 30-stem (Kolk et al. 1998). Therefore, our DMD simulation not

Fig. 9.3 Folding of a pseudoknot. For one replica, we present the RMSD (a) and energy (b) as the
function of simulation time. Before folding into its native state (c), the molecule samples a folding
intermediate state (d). (e) Specific heat is computed from the replica exchange trajectories using
WHAM. (f) Two-dimensional potential of mean force 2D-PMF (potential mean force) for
pseudoknot folding at T* ¼ 0.245 (corresponds to the major peak in the specific heat). The two
intermediate states and the native state are indicated by I1, I2, and N, respectively. (g) The 2D-PMF
plot at T* ¼ 0.21
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261only allows the prediction of the native state but also enables us to identify folding
262intermediate states that might be important for the function of the RNA. The
263availability of multiple folding trajectories at different temperatures allows quanti-
264tative characterization of the folding thermodynamics.
265We used the weighted histogram analysis method (WHAM) to calculate folding
266thermodynamics. The WHAMmethod utilizes multiple simulation trajectories with
267overlapping sampling along the reaction coordinates. The density of states rðEÞ is
268self-consistently computed by combining histograms from different simulation
269trajectories ( AU2Kumar et al. 1992). Given the density of states, the folding specific
270heat (Cv) can be computed at different temperatures according to the partition
271function, Z ¼

Ð
rðEÞ expð"E=KBTÞdE. To compute the potential of mean force

272(PMF) as a function of reaction coordinate A, we compute the conditional proba-
273bility P(A|E) of observing A at given energy E, which is evaluated from all
274simulation trajectories. Here, the reaction coordinate A can be any physical param-
275eter describing the folding transitions, such as the number of native base pairs, the
276radius of gyration, or RMSD. The conditional probability P(A|E) can be estimated
277from the histogram of parameter A for conformation states whose potential energies
278are within the range of [E, E + dE]. The PMF is computed as

PMFðAÞ ¼ " lnð
ð
PðAjEÞrðEÞ expð"E=KBTÞdEÞ þ C: (9.6)

279Here, C is the reference constant, and we assign the lowest PMF a value of zero.
280Since our simulations start from fully extended conformations, we exclude the
281trajectories from the first 5 ( 105 time units and use those of the last 1.5 ( 106

282time units for WHAM analysis. We used the trajectories from all replicas to
283compute histograms. In Fig. 9.3e–g, we illustrate the folding thermodynamics of
2841A60 using WHAM analysis, including the specific heat and potential mean field.
285The specific heat (Fig. 9.3e) has one peak centered at temperature T* ¼ 0.245 and a
286shoulder near T* ¼ 0.21, suggesting the presence of intermediate states in the
287folding pathway. The thermodynamic folding intermediate species is characterized
288by computing the two-dimensional potential of mean force (2D-PMF) as a function
289of the total number of base pairs (N) and the number of native base pairs (NN). The
2902D-PMF plots at temperatures corresponding to the two peaks in the specific heat
291(Fig. 9.3f, g) show two intermediate states with distinct free energy basins: the first
292intermediate state corresponds to the folded 50-hairpin, while the second intermedi-
293ate corresponds to the formation of one of the helix stems for the 30-pseudoknot. For
294example, the 2D-PMF plot at T* ¼ 0.21 (Fig. 9.3g) shows that the shoulder in the
295specific heat plot corresponds to the formation of the second intermediate state. The
296basins corresponding to the two intermediate states have a weak barrier, resulting in
297a lower peak height in the specific heat plot. Therefore, the coarse-grained RNA
298model combined with the DMD sampling algorithm allows the modeling of RNA
299structure as well as folding thermodynamics.
300We benchmarked the DMD–RNAmodel on a set of 153 RNAs with length up to
301100 nucleotides (Ding et al. 2008). For a majority of the simulated RNA sequences,

9 Multiscale Modeling of RNA Structure and Dynamics



302 the lowest energy structures from simulations have a percentage of native base
303 pairs, or Q-value, close to unity, suggesting the correct formation of native base
304 pairs in simulations. Here, we only considered the base pairs of A–U, G–C, and
305 U–G. The other commonly observed Wobble pairing, A–G, was not included in the
306 benchmark study but will be included in future studies. The average Q-value for all
307 153 RNA molecules studied is 94%. For comparison with available secondary
308 structure prediction methods, we also computed the Q-values using Mfold, which
309 yielded an average Q-value of 91%. Given the high percentage of correctly
310 predicted base pairs (94%) and the relatively simple topology of the studied RNA
311 molecules, the average number of incorrectly predicted base pairs is less than one.
312 The RMSD between predicted and experimental structures is often computed to
313 evaluate the accuracy of predicted tertiary structures. Although the RMSD calculation
314 does not provide detailed information on local structural features such as base pairing
315 and base stacking, it gives a straightforward measure of the overall structure predic-
316 tion. Recently, we have developed an approach to evaluate the statistical significance
317 of RNA 3D structure prediction with a given RMSD for different lengths (Hajdin et al.
318 2010). Alternatively, Parisien et al. (2009) have proposed new metrics to account for
319 both local and global structural information during structural comparison. However,
320 their calculation requires the atomic structure of the prediction. To evaluate the overall
321 3D fold of our coarse-grained models, we computed the RMSD to compare our
322 predictions with experimental structures. We found that for RNA molecules with
323 nucleotide length < 50 nt, the RMSD of predicted structures are less than 6 Å.
324 Predictions of longer RNAs exhibit larger RMSD due to the highly flexible nature
325 of RNAmolecules. Among the 153 sequences simulated, 84%of the predicted tertiary
326 structures have an RMSD of<4 Å with respect to the experimentally derived native
327 RNA structure. The benchmark results highlight the predictive power of the
328 DMD–RNA methodology, at least for small RNA molecules.
329 Three out of 153 RNA molecules studied are longer than 65 nucleotides, where
330 the DMD–RNA method cannot be applied to predict the native secondary and
331 tertiary structure from sequence alone. The challenges to predict large RNA folding
332 ab initio arise from the exponentially increasing size of the conformational space
333 and inaccuracies in the force field. Therefore, it is important to develop new
334 approaches to predict the 3D fold of large RNA molecules.

335 9.4 Automated RNA Structure Determination Using
336 Experimental Constraints

337 RNA structural information including secondary structure and some tertiary
338 interactions can often be derived experimentally and computationally prior to the
339 determination of high-resolution 3D structure. Accurate RNA secondary structures
340 can be obtained from comparative sequence analysis (Gutell et al. 2002; Michel and
341 Westhof 1990) and experimentally constrained prediction (Deigan et al. 2009a).
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342SHAPE chemistry (selective 20-hydroxyl acylation analyzed by primer extension)
343was recently shown to be a powerful approach for analyzing secondary structure at
344single nucleotide resolution for RNAs of any length (Merino et al. 2005; Wilkinson
345et al. 2006). SHAPE exploits the discovery that the 20-OH group in unconstrained or
346flexible nucleotides reacts preferentially with hydroxyl-selective electrophilic
347reagents. In contrast, nucleotides constrained by base-pairing or tertiary
348interactions are unreactive. The resulting reactivity information can be used, in
349concert with a secondary structure prediction algorithm, to obtain accurate second-
350ary structures (Deigan et al. 2009b; Mathews et al. 2004; Mortimer and Weeks
3512007; Wang et al. 2008; Wilkinson et al. 2008). Long-range interactions of RNA
352molecules can also be inferred by biochemical and bioinformatic methods, such as
353dimethyl sulfate (DMS) modification (Jan and Sarnow 2002; Flor et al. 1989),
354hydroxyl radical protection (Murphy and Cech 1994), mutational analysis
355(Kanamori and Nakashima 2001; De la Pena et al. 2003; Khvorova et al. 2003;
356Murphy and Cech 1994; Wang et al. 1995), and sequence covariation (Cannone
357et al. 2002). Therefore, we propose to incorporate experimentally determined
358secondary and tertiary structure information into DMD simulations to reconstruct
359a conformational ensemble that is consistent with experimental measurements.
360In general, existing programs for modeling complex RNAs use either computa-
361tionally intensive all-atom reconstruction, which limits their applications to small
362RNAs, or overly simplifiedmodels that omit key structural details. Other challenges in
363many current approaches are requirements for high levels of expert user intervention
364or comparative sequence information and the reliance on chemical intuition derived
365from preexisting information on tertiary interactions [reviewed in (Shapiro et al.
3662007)]. Here, we developed an approach for accurate de novo determination of
367RNA tertiary fold that does not require expert user intervention nor impose heavy
368computational requirements, and that is efficient for large RNAs (Fig. 9.4). The
369approach takes an input list of base pairs and distance constraints between specific
370pairs of nucleotides and outputs a structural ensemble that is consistent with the input
371constraints. Starting from the extended conformation, we performed DMD
372simulations with biased potential for base-pairing constraints. Iterative DMD optimi-
373zation was performed until all base pairs formed. After base-pair formation was
374confirmed, long-range interaction constraints were added for DMD simulated
375annealing simulations. At the end of each simulated annealing simulation, we devised
376filters to evaluate the simulation results, including radius of gyration and/or number of
377satisfied long-range constraints. We performed iterative annealing simulations until
378all filters were satisfied and, after constructing the structural ensemble from simulation
379trajectories, performed cluster analysis to identify representative structures. In all
380DMD simulations, only serial computation (instead of replica exchange) was used,
381which also reduced the computational requirement.
382We tested the automated structure refinement method on tRNAasp (Gherghe et al.
3832009). Base pairing from the X-ray crystallography structure was consistent with the
384SHAPE-derived secondary structures. Long-range distance constraints were deter-
385mined using a site-directed footprinting experiment. An Fe(II)-EDTA moiety was
386tethered specifically to RNA using the site-selective intercalation reagent
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387 methidiumpropyl-EDTA (MPE) (Hertzberg and Dervan 1982). MPE preferentially
388 intercalates at CpG steps in RNA at sites adjacent to a single-nucleotide bulge (White
389 and Draper 1987; White and Draper 1989), which can be introduced by mutations in
390 helical regions. To apply the cleavage information to bias DMD simulations, we
391 developed a generic approach to interpret each cleavage event as a distance constraint
392 (Fig. 9.5). The interaction potential features a “soft” energy wall at 25 Å, with smaller
393 energy bonuses extending out to 35 Å (Fig. 9.5). The 25-Å barrier corresponds to the
394 distance cutoff within which the nucleotides exhibit strong cleavage and beyond
395 which the nucleotides have weak cleavage. The interaction strength is assigned
396 according to the cleavage intensity [E / ln(I/<I>)]. This approach has two
397 advantages: (1) no user input is required to decide whether a given cleavage is
398 significant or not and (2) structure refinement is highly tolerant of measurement errors
399 inherent in any hydroxyl radical footprinting experiment. By using this structure
400 determination approach (Fig. 9.5), we were able to refine the structure of tRNAasp to
401 6.4 Å RMSD relative to the crystal structure (Gherghe et al. 2009).
402 Recently, we applied the structure refinement methodology on four RNAs:
403 domain III of the cricket paralysis virus internal ribosome entry site (CrPV)

Primary sequence AND
Base-pairs determined by

SHAPE chemistry

DMD Optimization

All base-pair formed?
No

Randomize velocity with DMD
simulation at a high temperature

Add potential for
long-range constraints

Long-range constraints
From experiments

Assign biased potential for
base-pair constraints

Yes

DMD Simulated Annealing

Filters, e.g. Rg
and/or number of long-range

constraint violations,
satisfied?

Randomize velocity with DMD
Simulation at a high temperature

No

Construct the structure ensemble consistent with experimental
measurement and perform the cluster analysis to identify
representative structures for all-atom reconstruction.

Yes

Fig. 9.4 Flowchart of the DMD–RNA structure determination method using experimentally
derived structural information
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404(49 nts), a full-length hammerhead ribozyme from S. mansoni (HHR) (67 nts),
405S. cerevisiae tRNAAsp (75 nts), and the P546 domain of the T. thermophilia group
406I intron (P546) (158 nts). Each of these RNAs has a complex three-dimensional fold,
407involving more than simple intrahelix interactions. Prior to publication of the high-
408resolution structures (Cate et al. 1996; Costantino et al. 2008;Martick and Scott 2006;
409Westhof et al. 1988), significant biochemical or bioinformatic data describing tertiary
410interactionswere available for each RNA. The secondary structure was also known to
411high accuracy in each case. Only this prior information was used during DMD
412refinement. In all cases, we were able to generate a low-RMSD structure. The
413RMSD between the predicted structure and the native state for the CrPV, HHR,
414tRNAAsp, and P546 RNAs are 3.6, 5.4, 6.4, and 11.3 Å, respectively (Lavender et al.
4152010). Calculations were performed on a Linux workstation (Intel Pentium 4 proces-
416sor, 3.2 GHz) and the CPU times ranged from 18 (CrPV, 49 nts) to 42 h (P546,
417158 nts). Therefore, the combination of efficient DMD simulations and sufficient
418biochemical experiments can accurately determineRNA structure of arbitrary length.

4199.5 Conclusions

420We have developed a multiscale RNA modeling approach to model 3D structure
421and dynamics of RNAs having a wide range of lengths. We use a coarse-grained
422representation of the RNA to efficiently model the conformational space. For short
423RNA molecules (<50 nt), we are able to capture the folded state from the sequence
424alone. The availability of replica-exchange simulation trajectories at multiple
425temperatures allows for the characterization of folding thermodynamics as well
426as capture of the final folded state. To efficiently sample the exponentially increas-
427ing conformational space of large RNA molecules, we devised an automated
428modeling approach to determine large and complex RNA structures using experi-
429mentally derived structural information. A benchmark study (Lavender et al. 2010)
430highlights the application of combining DMD simulation and experimental struc-
431tural information to yield native-like models for the diverse universe of functionally
432important RNAs whose structures cannot be characterized by conventional
433methods.

Fig. 9.5 Potential function
used to convert experimental
cleavage information into
DMD potential energy
constraints
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