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RNA Three-Dimensional Structure Determination 
Using Experimental Constraints

Feng Ding and Nikolay V. Dokholyan

8.1  Introduction

RNAs function not only as bridges between the genetic information stored in DNA and 
the !nal protein products, as stated in the Central Dogma; recently, RNA has also been 
found to play diverse roles in almost every aspect of cell life (Cruz and Westhof, 2009; 
Nilsen, 2007; Sharp, 2009; Wan et al., 2011), from regulating transcription and translation 
(e.g., siRNA, miRNA, or riboswitch regulator motifs; Edwards et al., 2007) to catalyzing 
mRNA splicing (spliceosome RNA or self-splicing introns; Vicens and Cech, 2006) and 
protein synthesis (rRNA). These newly discovered RNA functions either are encoded in 
their primary sequences, through complementarity to target sequences, or originate from 
their ability to form complex secondary and high-order tertiary structures. The 3D RNA 
structures, formed by packing of base-paired helices, allow speci!c interactions with itself 
or other biomolecules, including proteins, nucleic acids, and small-molecule ligands. The 
well-de!ned 3D structures of RNAs also determine the accessibility of speci!c sequences 
important for function. These novel functions of structural RNAs have been uncovered and 
characterized by studying a small fraction of the known RNA world. Whereas only 2% of a 
typical eukaryotic genome is translated into proteins, ∼90% is transcribed into some kind 
of noncoding RNA, including antigene, long noncoding, small regulatory, and scaffolding 
RNAs (Janowski and Corey, 2010; Sharp, 2009; Wan et al., 2011; Wang et al., 2011a; Wang et 
al., 2011b). A large portion of these unknown RNAs form functional 3D structures, which 
remain to be characterized. The fact that RNAs adopt speci!c 3D structures in order to 
perform their functions also makes them potential drug targets (Hermann and Westhof, 
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160 RNA Nanotechnology and Therapeutics

1998; Sucheck and Wong, 2000). Indeed, many well-known antibiotics bind to the RNA 
component of the bacterial ribosome. More recently, it was discovered that riboswitches 
could be targets for antibiotics (Kim et al., 2009; Lee et al., 2009; Mulhbacher et al., 2010; 
Ott et al., 2009). Therefore, the knowledge of the underlying RNA and RNA complex struc-
tures can not only enhance our understanding of RNA functions but also aid in design of 
novel drugs using structure-based rational drug design.

Traditional high-resolution structure determination methods such as x-ray crystallog-
raphy and NMR spectroscopy offer crucial insight into the details of RNA structure– 
function relationships. However, as noted by many x-ray crystallography experts (Ke and 
Doudna, 2004), it is often dif!cult to grow RNA crystals due to the "exible nature of RNA 
molecules, many of which can either adopt multiple conformations or have signi!cant 
unstructured components. On the other hand, RNAs amenable to NMR experiments are 
limited to small RNAs. For example, most RNAs in the Protein Databank (Berman et al., 
2000) whose structures are determined by NMR are below 50 nucleotides (< 50 nts) in 
length. Therefore, there is a crucial need for novel methods of determining the 3D struc-
tures of RNAs. Computational modeling of RNA 3D structures offers the opportunity to 
incorporate the structural features of RNAs extracted from known RNA structures (Das 
and Baker, 2007; Jonikas et al., 2009; Jossinet and Westhof, 2005; Major et al., 1993; Major 
et al., 1991; Massire et al., 1998; Parisien and Major, 2008; Shapiro et al., 2007; Tsai et al., 
2003), to integrate physical and chemical principles (Cao and Chen, 2011; Ding et al., 2008), 
and to include experimentally derived structural information in modeling (Jonikas et al., 
2009). For instance, several recent RNA 3D structure modeling methods (Cao and Chen, 
2011; Das and Baker, 2007; Ding et al., 2008; Parisien and Major, 2008) have yielded accu-
rate structure predictions of small RNAs from sequence alone, highlighting the predictive 
power of RNA modeling approaches in general.

The ability to accurately predict RNA 3D structures is also important for the emerging 
!eld of RNA nanotechnology (Guo, 2010). In the bottom-up approaches of RNA nano-
technology, RNA building blocks are engineered to self-assemble into nanoscale materials 
with applications in nanomedicine and nanodevices (Guo, 2005). Computational model-
ing of RNA 3D structures, which accounts for noncanonical base–base pairs (Das et al., 
2010), long-range tertiary interactions (Gherghe et al., 2009; Lavender et al., 2010), and ion-
dependent folding (Draper et al., 2005), can help design the building blocks, predict the 
!nal structure, and characterize the assembly kinetics. The major challenges of computa-
tional RNA 3D structure modeling come from the vast conformational space of RNA and 
inaccuracy in the force !eld describing RNA folding. As RNA size increases, the avail-
able conformational space increases exponentially and the effects of force !eld inaccuracy 
accumulate. As a result, tertiary structure prediction for large RNAs with complex topolo-
gies is beyond the reach of the current ab initio approaches (Cao and Chen, 2011; Das and 
Baker, 2007; Ding et al., 2008; Parisien and Major, 2008). On the other hand, many biophysi-
cal and biochemical methods have been developed to probe RNA secondary and tertiary 
structure. For example, the selective 2′-hydroxyl acylation analyzed by primer extension 
(SHAPE) chemistry developed by Weeks and colleagues (Deigan et al., 2009; Weeks, 2010) 
characterizes the probability of base pairing for each nucleotide. Other experiments such 
as "uorescence resonance energy transfer (FRET) (Rueda et al., 2004), cross-linking (Harris 
et al., 1994; Pinard et al., 2001; Yu et al., 2008), and tethered hydroxyl radical probing (t-HRP) 
(Das et al., 2008; Gherghe et al., 2009) can probe internucleotide distances. The solvent 
accessibility of individual nucleotides can also be explored by solution hydroxyl radical 
probing (HRP) experiments (Cate et al., 1996; Pastor et al., 2000; Tullius and Greenbaum, 
2005). Incorporation of experimentally derived structural information with computational 
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modeling can markedly reduce the allowed conformational space and thereby facilitate 
the computational prediction of native RNA ensembles (Das et al., 2008; Ding et al., 2012; 
Gherghe et al., 2009; Jonikas et al., 2009; Lavender et al., 2010; Yang et al., 2010; Yu et al., 
2008).

Next, we !rst brie"y introduce our computational RNA model. We will also discuss a 
novel approach to evaluate the statistical signi!cance of an RNA structural model. We 
will then discuss our approaches to incorporate various pieces of experimentally derived 
structural information, including base pairs, long-range distance constraints, and solvent 
accessibilities, in RNA 3D structure re!nement and prediction.

8.2  Coarse-Grained RNA Modeling Using Discrete Molecule Dynamics

We use DMD as the conformational sampling engine. A detailed description of the 
DMD algorithm can be found elsewhere (Dokholyan et al., 1998; Rapaport, 2004; Zhou 
and Karplus, 1997). The difference between discrete molecular dynamics and traditional 
molecular dynamics is in the interaction potential functions. Interatomic interactions 
in DMD are governed by stepwise potential functions (Figure 8.1a). Neighboring inter-
actions (such as bonds, bond angles, and dihedrals) are modeled by in!nitely high square 
well potentials (Figure 8.1b). By approximating the continuous potential functions with 
step functions of pairwise distances, DMD simulations are reduced to event-driven (col-
lision) molecular dynamics simulation. In a DMD simulation, atoms move with constant 
velocity until they collide with another atom. As soon as the potential of interaction 
between the two atoms changes (i.e., the pairwise distance is at the step of the stepwise 
potential function) the velocities of the two interacting atoms change instantaneously 
(Figure 8.1a). These velocity changes are required to conform to the conservation laws of 
energy, momentum, and angular momentum. Each such collision is termed an “event.” 
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FIGURE 8.1
Discrete molecular dynamics simulations. (a) Schematic of the DMD potential. The stepwise function used in 
DMD is the approximation of the continuous function in traditional molecular dynamics. The insert depicts the 
collision of two atoms with masses of mi and mj at the initial position of ri and rj, respectively. The two atoms 
move with constant velocities (v) until they meet at distance of Rij. (b) Schematic of the potential energy of bonds 
in DMD. The atom pairs remain within the distance range during the simulation.
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The sampling ef!ciency of DMD over traditional MD is mainly due to rapid processing 
of collision events and localized updates of collisions (only colliding atoms are updated 
at each collision). In the limit of in!nitesimally small steps, the discrete step function 
approaches the continuous potential function and DMD simulations become equivalent 
to traditional molecular dynamics.

We approximate the single-stranded RNA molecule as a coarse-grained ‘beads-on-
a-string’ polymer with three beads representing each nucleotide, one for sugar (S), one 
for phosphate (P), and one for nucleotide base (B) (Figure 8.2b). The P and S beads are 
positioned at the centers of mass of the corresponding phosphate group and the !ve-
atom ring of sugar group, respectively. For both purines (adenine and guanine) and 
pyrimidines (uracil and cytosine), we represent the base bead (B) as the center of the 
six-atom ring. The neighboring beads along the sequence, which may represent moi-
eties that belong to the same or a neighboring nucleotide, are constrained to mimic the 
chain connectivity and local chain geometry (Figure 8.2b). Types of constraints include 
covalent bonds (solid lines), bond angles (dashed lines), and dihedral angles (dot-dashed 
lines). The parameters for bonded interactions mimic the folded RNA structure and are 
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FIGURE 8.2
Ab initio RNA folding using the simpli!ed RNA model. (a) Each nucleotide is represented by three coarse-
grained beads. (b) The lines illustrate the bonded interactions, important for modeling RNA geometry. (c) The 
base pairing interactions are modeled by hydrogen bonding interactions (Ding et al., 2003). For 153 RNAs, the 
predicted structures by DMD simulations recapitulate not only the secondary structures (d, the fraction of native 
base pairs, Q-value) but also the tertiary structure (e, root mean square deviation from the native states, RMSD).
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derived from a high resolution RNA structure database (Murray et al., 2003). Nonbonded 
interactions are crucial to model the folding dynamics of RNA molecules. In our model, 
we include base pairing (Watson-Crick pairs of A-U G-C, and Wobble pair of U-G), base 
stacking, short-range phosphate–phosphate repulsion, and hydrophobic interactions. 
The details of the interaction parameters can be found in Ref. (Ding and Dokholyan, 
2012; Ding et al., 2008).

Using the simpli!ed RNA model in DMD simulations, we were able to accurately fold 
a large set of 150 small RNAs (<50 nts) to their corresponding native states (Ding et al., 
2008) (Figure 8.2e). The majority of the predicted structures are within 4 Å root mean 
square deviations (RMSD) from the native states. The average percentage of accurately 
predicted native base pairs for all 153 RNAs studied is 94% (Figure 8.2d). For comparison, 
we outperformed other secondary structure prediction methods, including the commonly 
used Mfold (Zuker, 2003), which yielded an average of 91% of native base pairs predicted. 
Given the high percentage of correctly predicted base pairs (94%), the average number of 
incorrectly predicted base pairs is less than one for the studied RNAs. These results high-
light the robustness of our DMD-based RNA folding approach. Inspired by this result, we 
developed a web server, iFoldRNA (http://ifoldrna.dokhlab.org), which currently allows 
ab initio RNA 3D structure prediction of short RNAs for the RNA research community.

8.3  How to Evaluate an RNA 3D Structure Model

To benchmark whether a given computational RNA modeling method is predictive, RMSD 
between predicted and accepted structures is commonly used. However, RMSD is not a 
straightforward measure of the signi!cance of a given prediction. For example, a struc-
tural prediction of 10 Å RMSD for a short RNA stem is unlikely to be helpful in generating 
strong and testable biological hypotheses. However, a prediction of the same RMSD but for 
a large RNA as group I intron (Cate et al., 1996) is highly signi!cant. Therefore, it is impor-
tant to develop a quantity for structural evaluation that is length independent.

We performed extensive modeling of RNA structures with different lengths and gener-
ated decoy structures with alternative base pairing and helix packing (Hajdin et al., 2010). 
We found that for a given RNA, the pairwise RMSD between any two randomly generated 
RNA-like structures belongs to a Gaussian distribution. The average value of the Gaussian 
depends on the length of the RNA and on whether the native base pairs are included in 
generating the model structures (Figure 8.3). If the native base pairing information is used 
in modeling, the average RMSD between two random structures is signi!cantly smaller 
since the available conformational space is reduced. We found that the average RMSD has 
a power-law dependence to the RNA length, with the exponent of 0.41. Similarly, similar 
behavior was observed for protein, except that the power-law exponent is ∼1/3, as for a 
compact globular objects (Reva et al., 1998). This result suggests that RNA in general is less 
compact compared to proteins. Interestingly, the standard deviation of the Gaussian does 
not signi!cantly depend on the RNA length, but rather is constant. Therefore, we devel-
oped an empirical relationship between average RMSD and RNA length, which can be 
used to compute the statistical signi!cance of a prediction with given RMSD to the native 
state (Hajdin et al., 2010). The statistical signi!cance calculation for a given prediction is 
available online at iFoldRNA.

K14577_C008.indd   163 3/1/2013   1:59:23 PM



164 RNA Nanotechnology and Therapeutics

8.4  RNA Structure Determination Using Various 
Types of Structural Information

Three out of 153 RNA molecules studied in the ab initio folding simulations are longer than 
65 nucleotides, where the DMD-RNA method cannot be applied to predict the native sec-
ondary and tertiary structure from sequence alone (Figures 8.2d and 8.2e). The challenges 
to predict large RNA folding ab initio arise from the exponentially increasing size of the 
conformational space and inaccuracies in the force !eld. Incorporation of experimentally 
or bioinformatically derived RNA structural information as constraints in RNA model-
ing greatly reduces available the conformational space, and thus increases the prediction 
accuracy (Hajdin et al., 2010).

8.4.1  Base Pairing

RNA secondary structures can be obtained by evolutionary study of homologous sequences 
(Massire et al., 1998). The base-paired nucleotides tend to coevolve during evolution by 
maintaining the secondary structures. In order to obtain statistically signi!cant predic-
tions, the number of homologous sequences should be large. When a suf!cient number of 
homologous sequences are not available, this approach is not applicable. On the other hand, 
chemical probing approaches have been widely used to probe RNA secondary structures 
(Fritz et al., 2002; Gopinath, 2009; Tijerina et al., 2007). Among them, SHAPE chemistry 
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FIGURE 8.3
Statistical signi!cance of a given RNA structure prediction. (a) The distribution of pairwise RMSD between two 
randomly generated RNA structures is computed as the function of RNA length. With incorporation of base 
pairs (low panel), the distribution is shifted toward lower average RMSD. (b) The average RMSD (upper) and 
standard deviation (lower) are plotted as the function of length.
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(Deigan et al., 2009; Weeks, 2010) has been shown to be a powerful approach for analyzing 
secondary structure at single nucleotide resolution for RNAs of any length (Merino et al., 
2005; Wilkinson et al., 2006). SHAPE exploits the discovery that the 2′-OH group in uncon-
strained or "exible nucleotides reacts preferentially with hydroxyl- selective electrophilic 
reagents. In contrast, nucleotides constrained by base pairing or tertiary interactions are 
unreactive. The resulting reactivity information can be used, in concert with a secondary 
structure prediction algorithm, to obtain accurate secondary structures (Deigan et al., 2009; 
Mathews et al., 2004; Mortimer and Weeks, 2007; Wang et al., 2008; Wilkinson et al., 2008).

For a given input list of base pairs, we assign energetic constraints between speci!c 
nucleotides to bias DMD simulations. We use the distance- and orientation-dependent 
base pairing interaction potential, as determined from statistical analysis of known RNA 
structures, to model base pair formation (Ding et al., 2008; Gherghe et al., 2009). The multi-
body interaction includes both the interaction between two bases Bi and Bj, and the auxil-
iary interactions between base Bi (Bj) of nucleotide i (j) and sugar Sj (Si)/phosphate Pj (Pi) of 
nucleotide j (i) (Figure 8.4a). To ef!ciently form the base pairs in DMD simulations, we also 
assign a weak but long-range attractive interaction between the two bases with the inter-
action range of 50 Å Å), which 
is ∼10 pN. We !nd that this weak attraction is able to effectively bring two nucleotides 
together to form a base pair in simulations. Using experimentally derived base pairing 
information, we predicted the 3D structure of the pseudoknot domain of the HCV IRES 
(Lavender et al., 2010). The recently solved crystal structure of the HCV IRES revealed 
(Berry et al., 2011) a structure that agreed closely with our model (Figure 8.5a). Consistent 
with this successful re!nement, our structure prediction for the glycine riboswitch domain 
(∼150 nts) in the !rst-ever blind RNA structure prediction competition, RNAPuzzles, was 
among the best submitted and included the recovery of atomistic features of the glycine 
binding pocket (Figure 8.5b) (Cruz, 2012).

8.4.2  Internucleotide Proximity Information

RNA tertiary structure is determined by long-range interactions between different sec-
ondary structure elements. Knowledge of proximity constraints between atoms or nucleo-
tides can signi!cantly reduce the conformational space and thus facilitate determination 
of the native structure. Experimentally determined atomic proximity information has 
been commonly used in structure re!nement. For example, pairwise distances between 
protons detected by nuclear Overhauser effect (NOE) in NMR experiments can be used 
to determine protein and RNA structures at high resolution. However, RNA structure 
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FIGURE 8.4
The base pair interaction. (a) The dot-dashed and thin solid lines between two nucleotides represent the multi-
body interactions, which capture the distance and angular dependence of base pairing. (b) The multistep poten-
tial between two bases is used to exert weak but long-range attraction that brings two nucleotides together.
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determination using NMR is often limited to small RNAs. On the other hand, long-range 
constraints for RNA modeling can be inferred from a variety of biochemical and bioin-
formatic techniques, ranging from t-HRP and cross-linking to sequence covariation (Gutell 
et al., 1992; Juzumiene et al., 2001; Michel and Westhof, 1990; Ziehler and Engelke, 2001). 
The derived structure information is low-resolution in nature, with inferred proximities 
between nucleotides rather than speci!c atoms. These low-resolution constraints are read-
ily incorporated into our coarse-grained RNA modeling.

In collaboration with Weeks group, we developed a t-HRP approach to obtain tertiary 
proximity constraints (Gherghe et al., 2009). An Fe(II)-EDTA moiety was tethered speci!-
cally to RNA using the site-selective intercalation reagent methidiumpropyl-EDTA (MPE) 
(Hertzberg and Dervan, 1984). MPE preferentially intercalates at CpG steps in RNA at sites 
adjacent to a single nucleotide bulge (White and Draper, 1987, 1989), which can be intro-
duced by mutations in helical regions. The nucleotides accessible to the Fe(II)-EDTA will 
have a high chance to be cleaved by the induced hydroxyl radical, while remote nucleotides 
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FIGURE 8.5
Blind RNA 3D structure prediction. The predicted structures are blue; crystallographic structures are gray. 
(a) The HCV IRES pseudoknot domain, which indicated that this domain likely functions by tRNA mimicry 
(Lavender et al., 2010), and (b) the glycine riboswitch, the second-best result in the RNA Puzzles community 
structure prediction exercise.
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will not be cleaved. To apply the cleavage information to bias DMD simulations, we devel-
oped a generic approach to interpret the cleavage patterns as distance constraints (Figure 
8.6a). The interaction potential features a “soft” energy wall at 25 Å, with smaller energy 
bonuses extending out to 35 Å (Figure 8.4a). The 25-Å barrier corresponds to the distance 
cutoff within which the nucleotides exhibit strong cleavage, and beyond which the nucleo-
tides have weak cleavage. The cutoff value is also consistent with the length of the MPE-
conjugated cleavage agent. The interaction strength is assigned according to the cleavage 
intensity [E ∼ ln(I/<I>)], since the cleavage intensity is interpreted as the probability to be 
within the cutoff range cleavable by the reagent. This approach has two advantages: (1) no 
user input is required to decide whether a given cleavage is signi!cant or not and (2) struc-
ture re!nement is highly tolerant of measurement errors inherent in any hydroxyl radi-
cal footprinting experiment. By applying the experimentally derived constraints in DMD 
simulations, we were able to re!ne the structure of tRNAAsp to 6.4 Å RMSD with respect to 
the crystal structure (Gherghe et al., 2009).

In most high-pro!le RNA structure determination cases, secondary structures as well 
as some key tertiary structure information, such as internucleotide proximity information, 
were known before the high-resolution structure was solved using x-ray crystallography 
or NMR. For example, the T- and D-loop of tRNAAsp were known to be close to each other 
before the 3D structure was solved. To test the ability of DMD-based RNA structure re!ne-
ment using a few long-range distance constraints, we used four RNAs: domain III of the 
cricket paralysis virus internal ribosome entry site (CrPV) (49 nts), a full-length hammer-
head ribozyme from S. mansoni (HHR) (67 nts), S. cerevisiae tRNAAsp (75 nts), and the P546 
domain of the T.  thermophilia group I intron (P546) (158 nts). Each of these RNAs has a 
complex 3D fold, involving more than simple intrahelix interactions. Prior to publication of 
the high-resolution structures (Cate et al., 1996; Costantino et al., 2008; Martick and Scott, 
2006; Westhof et al., 1988), signi!cant biochemical or bioinformatic data describing tertiary 
interactions were available for each RNA. The secondary structure was also known to 
high accuracy in each case. Only this prior information of secondary and tertiary struc-
tures was used during DMD re!nement. In all cases, we were able to generate a low-RMSD 
structure. The RMSDs between the predicted structures and the native states for the CrPV, 
HHR, tRNAAsp, and P546 RNAs are 3.6, 5.4, 6.4, and 11.3 Å, respectively (Lavender et al., 
2010) (Figure 8.7). This benchmark result highlights the ef!ciency of internucleotide prox-
imity constraints in RNA structure determination.
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FIGURE 8.6
RNA structure re!nement using t-HRP reactivity. (a) The interaction potential between the tethered nucleotide 
and the rest of RNA. The interaction strength ε depends on the intensity of cleavage reactivity. (b) Comparison 
between computational prediction (in rainbow color) and the experimental structure (in gray).
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8.4.3  Solvent Accessibility

Experimental methods used to probe through-space distances, such as t-HRP (Das et al., 
2008; Gherghe et al., 2009), cross-linking (Harris et al., 1994; Pinard et al., 2001; Yu et al., 
2008), and FRET (Rueda et al., 2004), can give high-quality distance information. However, 
these techniques often require synthesis of specialized RNA constructs, careful controls 
for unintended structural perturbations, and complex approaches for data interpretation 
(Hajdin et al., 2010). In contrast, solution HRP, which reports the approximate backbone 
solvent accessibility for most nucleotides in an RNA molecule (Cate et al., 1996; Tullius and 
Greenbaum, 2005), is straightforward to implement. HRP measurements have been used 
to evaluate or !lter RNA structural ensembles (Bergman et al., 2004; Jonikas et al., 2009; 
Rangan et al., 2003; Tullius and Greenbaum, 2005) but have not been used to drive RNA 3D 
structure determination in a quantitative and systematic way. We developed an approach 
that incorporates solvent accessibility information derived from bias DMD (Dokholyan et 
al., 1998; Zhou and Karplus, 1997) simulations of RNA with HRP information to generate 
structural ensembles consistent with experimental measurements.

In order to incorporate experimentally obtained HRP reactivities into DMD simula-
tions, a structural parameter consistent with experimental measurements must be 
identi!ed. Hydroxyl radical reactivity is correlated with backbone solvent accessibility 
(Balasubramanian et al., 1998; Cate et al., 1996); however, it is not straightforward to incor-
porate solvent accessibility as a constraint in a molecular dynamics simulation. We !nd 
that solvent accessibility is inversely proportional to the number of through-space neigh-
bor atoms. Nucleotides in the M-Box riboswitch with low HRP reactivities are generally 
buried and have many through-space contacts, whereas nucleotides with high reactivities 
have fewer contacts and are more exposed (Figure 8.8a). The number of through-space 
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FIGURE 8.7
Benchmark of RNA structure re!nement using information of base pairs and a small number of internucleotide 
tertiary contacts. The test sets are composed of CrPV, HHR, tRNAAsp, and P546 domain of group I intron.
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contacts can be readily incorporated as a constraint in DMD and other simulation methods 
(Vendruscolo et al., 2001), and we use it to bias our simulations. We assign a bias poten-
tial with two components. The !rst includes uniform pairwise attractive potentials for 
most of the nucleotides. This general attraction encourages collapse of the RNA and over-
all nucleotide packing. The second is an over-burial repulsion potential incurred when a 
given nucleotide exceeds an assigned threshold number of contacts (Nmax) derived from its 
experimental HRP reactivity (Figure 8.8b). Taken together, we expect that each nucleotide 
forms its maximally allowed number of contacts, which drives conformational sampling 
of structures consistent with input HRP data.

To obtain structural ensembles consistent with HRP data, we perform simulations and 
analysis in three steps (Figure 8.8c). First, we perform serial DMD simulations with inputs 
of RNA sequence and canonical base pairs. We use the approach described in Aim 1 to 
bias formation of base pairs. The result of these simulations is the formation of native 
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FIGURE 8.8
HRP-driven RNA structure re!nement. (a) The structure of the M-box riboswitch is illustrated. Nucleotides are 
colored according to HRP reactivity (blue to red); nucleotides without HRP data are shown in gray. A solvent-
exposed nucleotide with low HRP reactivity (blue) and a buried nucleotide with high HRP reactivity (red) are 
emphasized with all-atom representations (asterisks). (b) The assignment of potentials for incorporating HRP 
reactivities into DMD simulations. Each nucleotide is assigned a threshold number of contacts (Nmax) within the 
cutoff distance (dcutoff = 14 Å). For a given nucleotide i, its n through-space neighbors are denoted as i1, i2, i3.... An 
approaching nucleotide can form a new contact (indicated by the inward arrow) if the number of total contacts 
is smaller than Nmax. If n is larger than Nmax, the approaching nucleotide can form a contact only if the total DMD 
kinetic energy is suf!cient to overcome the energy penalty for overpacking. Otherwise, the nucleotide re"ects 
back without forming a new contact (denoted by the outward arrow). (c) The HRP-directed DMD simulation 
algorithm. (Adapted from Ding, F. et al. Nat Methods, 9, 603–608, 2012. With permission.)
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secondary structures. Second, we perform replica exchange DMD simulations and impose 
the HRP-derived bias potentials to enrich conformations consistent with the experimental 
HRP data. Replica exchange simulations have been shown to be ef!cient in RNA confor-
mational sampling. Third, we select 100 structures with lowest energies and highest cor-
relations between HRP reactivities and numbers of contacts and perform RMSD-based 
clustering analysis to identify representative structures of the predicted structural ensem-
ble. The resulting model features well-de!ned RNA structure and agrees with the input 
experimental data.

We tested our HRP-based RNA modeling approach on nine structurally diverse RNAs, 
with length ranging from 80 to 230 nts. In all cases of compact RNAs, we obtained RNA 3D 
structures with high statistical signi!cance (Figures 8.9a through 8.9d). It is interesting that 
the performance of our prediction is independent of RNA lengths. However, our methods 
failed to reproduce the structures of less-compact RNAs (Figures 8.9e and 8.9f). Therefore, 
it is necessary to determine whether we can know a priori whether a given RNA is compact 
or not, and thus whether HRP reactivity can be used to re!ne the 3D structure. A compact 
RNA has a high fraction of buried nucleotides. Since HRP measures the extent of nucleo-
tide burial (number of through-space neighbors), we can use the fraction of nucleotides 
with low HRP reactivity to measure the compactness. For a given RNA with HRP data, 
we compute the fraction of nucleotides, f (r), with HRP reactivities below a given value, r 
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FIGURE 8.9
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structures, mean RMSD, and P-value are shown. Signi!cant P-values are emphasized in bold. Panels (a) through 
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pact RNAs, where our predictions failed to recapitulate the native structures (Ding et al., 2012). (g) Fraction of 
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(Figure 8.10). Interestingly, we !nd that compact and noncompact RNAs have clear differ-
ences in f (r) values around r = 0.25. Compact RNAs usually have f (0.25) larger than 0.25, 
while less-compact RNAs have smaller f (0.25) values. Our results (Figure 8.9g) suggest 
that f (0.25) is indeed a good predictor for the applicability of our HRP-driven RNA re!ne-
ment method. The programs for HRP-driven RNA re!nement are also available online at 
iFoldRNA (http://troll.med.unc.edu/ifoldrna/HRP-1.0-openmpi.tgz).

8.5  Conclusion

With advances in high-throughput sequencing, RNAs with novel functions are being dis-
covered at a rapid pace. Knowledge of the underlying 3D structures of these RNAs is a 
fundamental prerequisite to complete understanding and further manipulation of their 
functions. Due to experimental challenges in RNA structure determination, our knowl-
edge of structure–function relationships for RNAs lags behind that attained for proteins. 
Many biochemical and biophysical methods have been proposed to probe the RNA 2D and 
3D structures. Although the structural information derived from these approaches is often 
low resolution in nature, incorporation of these pieces of information in computational 
RNA modeling can greatly increase the prediction accuracy. With the rapid development 
of experimental characterizations and computational modeling, we expect the conver-
gence of two fronts for the emergence of hybrid approaches that can rapidly and accurately 
generate RNA 3D structures.
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