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8 ABSTRACT: Solution of the structures of ligand−receptor complexes via computational docking is an integral step in many
9 structural modeling efforts as well as in rational drug discovery. A major challenge in ligand−receptor docking is the modeling of
10 both receptor and ligand flexibilities in order to capture receptor conformational changes induced by ligand binding. In the
11 molecular docking suite MedusaDock, both ligand and receptor side chain flexibilities are modeled simultaneously with sets of
12 discrete rotamers, where the ligand rotamer library is generated “on the fly” in a stochastic manner. Here, we introduce backbone
13 flexibility into MedusaDock by implementing ensemble docking in a sequential manner for a set of distinct receptor backbone
14 conformations. We generate corresponding backbone ensembles to capture backbone changes upon binding to different ligands,
15 as observed experimentally. We develop a simple clustering and ranking approach to select the top poses as blind predictions. We
16 applied our method in the CSAR2011 benchmark exercise. In 28 out of 35 cases (80%) where the ligand−receptor complex
17 structures were released, we were able to predict near-native poses (<2.5 Å RMSD), the highest success rate reported for
18 CSAR2011. This result highlights the importance of modeling receptor backbone flexibility to the accurate docking of ligands to
19 flexible targets. We expect a broach application of our fully flexible docking approach in biological studies as well as in rational
20 drug design.

21 ■ INTRODUCTION
22 One major challenge in computational prediction of receptor−
23 ligand interactions is the large number of degrees of freedom,
24 including receptor backbone and side chain flexibilities, ligand
25 conformational flexibility, and ligand rigid-body motion. Of par-
26 ticular interest is receptor flexibility, which is essential for cap-
27 turing the receptor conformational changes upon ligand bind-
28 ing, i.e., the induced-fit effect.1−5 Receptor induced-fit can be
29 limited to the rearrangement of side chains in the binding pocket,
30 or extended to major rearrangement of the backbone, as observed
31 in many kinases.6 Because of the high dimensionality in describing
32 receptor conformational changes, modeling receptor flexibility is
33 highly challenging and has been one of the foci of recent ligand−
34 receptor docking studies.3−5,7−11

35 Several approaches have been proposed to capture receptor con-
36 formational changes. For example, the generation of an ensemble of
37 multiple predetermined conformations has been proposed to model
38 the receptor flexibility. The receptor conformation ensemble can be

39obtained experimentally by X-ray crystallography under differ-
40ent conditions or by NMR spectroscopy,12−15 computationally
41by molecular dynamics simulations,7,16−19 comparative model-
42ing,20 or normal-mode analysis.11,21 In these approaches, the
43derivation of structural ensembles representing binding-induced
44receptor conformational change is decoupled from the modeling
45of ligand binding. Each generated structure of the receptor is
46kept rigid during ligand docking, and receptor conformational
47flexibility is realized by selecting the optimal poses from ensemble
48docking in either sequential (independent)22 or coupled23 man-
49ners. Therefore, the major challenge to overcome in using these
50approaches is that the predetermined receptor conforma-
51tional ensemble must encompass significant sampling such
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52 that the ensemble contains favorable receptor conformations
53 for ligand binding.
54 Alternative approaches have been proposed to simultane-
55 ously sample the receptor and ligand flexibilities during
56 docking.8−10,24−27 For example, protein side chain rotamer
57 libraries, where continuous protein side chain conformational
58 space is modeled by a set of discrete states,28 have been used to
59 model protein flexibility during docking.8,10,24−26 Among these
60 rotamer-based approaches, approaches like RosettaLigand9,26

61 and MedusaDock27 extensively sample receptor side chain con-
62 formations near the binding pocket during docking, which has
63 been found to increase the prediction accuracy for near-native
64 poses. Specifically, MedusaDock treats ligand conformational
65 flexibility in the same manner as that of protein side chains,
66 with sets of discrete rotamers. The rotamer library of a ligand is
67 generated in a stochastic manner during docking. Benchmark
68 studies of MedusaDock suggested that sampling protein side
69 chain rotamers together with ligand during docking can effi-
70 ciently capture the receptor induced-fit, as well as improved
71 virtual screening enrichment for flexible targets.27

72 In this study, we incorporate backbone flexibility into
73 MedusaDock in order to blindly predict the ligand-binding poses

74for the CSAR2011 docking benchmark (www.csardock.org), which
75includes kinase targets known to be highly flexible.6,8,29,30 We adopt
76a simple multiple backbone conformation docking approach, where
77an ensemble of backbone conformations is selected to capture the
78backbone changes as observed in receptor structures solved under
79different conditions, including binding with different ligands. We
80then sequentially dock the ligand to the predetermined backbone
81conformations using the flexible side chain/flexible ligand docking
82suite, MedusaDock. We cluster the top-ranked poses generated
83from flexible docking to each backbone conformation in order
84to group structurally similar predictions. We score and rank the
85clusters in order to select the optimal ligand-binding poses for
86CSAR2011 predictions. Using the flexible backbone docking proto-
87col of MedusaDock, we were able to predict the near-native poses
88for 28 out of 35 ligands in the CSAR2011 benchmark, the highest
89success rate of near-native pose predictions (<2.5 Å RMSD), which
90highlights the importance of modeling receptor backbone in accu-
91rate docking of ligands to a flexible target.

92■ METHODS
93MedusaDock. We use MedusaDock27 to generate ligand−
94receptor binding poses. MedusaDock is a flexible docking method,

Table 1. Summary Table of the Predicted Ligand−kinase Poses.a

aFor each ligand−receptor pair, three poses are submitted for the CSAR 2011 exercise. Two ranking methods, according to either binding free
energy or the average binding energy (Methods section), were used. The RMSD values smaller than 2.5 Å are highlighted in italic bold font. The
cases where none of the top three poses are within 2.5 Å RMSD are in gray shading. *The given smile of ligand #29 for chk1 was different from the
actual ligand. We performed posterior docking simulations using the same ligand as observed in the crystal structure.
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95 where the flexibilities of ligand and receptor side chains are
96 sampled simultaneously. Details of the docking method can be
97 found in ref.27 Briefly, a ligand rotamer library is generated in a
98 stochastic manner “on the fly”. As a result, the sampling of ligand
99 conformations is treated in a unified way, as in the sampling of
100 protein side chains, which are modeled by a discrete set of con-
101 formations, i.e. rotamers.31,32 The docking protocol is composed
102 of two steps. First, representative ligand conformations are gener-
103 ated by clustering the stochastic rotamer library of each ligand.
104 Each representative ligand conformation is rapidly fitted into a
105 “smoothed” receptor pocket by turning off the van der Waals
106 repulsion between the ligand and the receptor side chains and
107 subsequent rigid-body docking. In the second step, fine-docking
108 is performed from each of the coarsely docked poses, where the
109 binding pose is minimized by iterative repacking of the rota-
110 mers of ligand and receptor side chains as well as ligand rigid-
111 body minimization. In the second fine-docking step, the van der
112 Waals repulsions between ligand and receptor side chains are
113 included. We use the MedusaScore33 scoring function to guide
114 the docking.

115MedusaScore. MedusaScore33 is a physical force field-
116based scoring function that describes the major physical inter-
117actions between proteins and ligands, including the van der
118Waals interaction (Evdw), hydrogen bonding (Ehbond), solvation
119(Esolv), and electrostatics (Ees). The van der Waals interaction
120parameters are adopted from the CHARMM19 force field. We
121dampen the rapid increase of van der Waals repulsion between
122overlapping atoms by linear interpolation of the repulsive
123term of the Lennard−Jones potential.31 We use the distance
124and orientation-dependent hydrogen bond model proposed
125by Kortemme and Baker.34 We compute the solvation energy
126using the EEF1 implicit solvent model proposed by Lazaridis and
127Karplus.35 The electrostatic interaction is calculated between the
128formal charges, including the charged residues of arginine, lysine,
129glutamate, and aspartate in proteins, and identified charged
130groups in the ligand. We used the distance-dependent dielectric
131constant, ∼r, to model the screening effect. We also introduce a
132solvent-accessibility-dependent weighting coefficient to model
133the environmental dependence of the electrostatic interactions.36

Figure 1. Flowchart of the flexible backbone docking protocol of MedusaDock. The boxes and arrows on the left column summarize the four
docking steps (Methods section). The illustrations with protein and/or ligand structures on the right column demonstrate the corresponding steps.
Multiple protein backbones in cartoon representation with different colors are selected for independent MedusaDock simulations. The ligands in
gray stick are placed in the pocket, where the conformational flexibility of both ligands and receptor side chains (in line representations) are sampled
simultaneously. The top poses ranked according MedusaScore are gathered (as shown in the box) for further clustering analysis to group similar
poses.
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134 The total MedusaScore describing the binding is the linear sum
135 of all of these energy terms.

= + + +E W E W E W E W Evdw vdw hbond hbond solv solv es es136 (1)

137 Here, the weights (W) were originally trained and deter-
138 mined for describing interamino acid interactions in high-resolution
139 protein structures.31 Notably, no protein−ligand data was used in
140 the development of MedusaScore,33 but the scoring function still
141 exhibits remarkable accuracy in both docking pose discrimination
142 and binding affinity prediction. Therefore, MedusaScore features
143 high transferability in both docking and virtual screening.27

144 Backbone Structural Ensemble Selection. We use the
145 “Sequence Similarity” search functionality included in the pro-
146 tein databank37 Web site (www.rcsb.org) to identify all solved
147 crystal structures of a protein. Given the reference PDB struc-
148 tures by the CSAR2011 organizers for chk1 (PDB ID: 2e9n),
149 erk2 (PDB ID: 3i5z), lpxc (PDB ID: 3p3e), and urokinase
150 (PDB ID: 1owe) kinases, we identified 62, 10, 4, and 4 solved
151 structures, respectively. Because these ensembles were relatively
152 small and many backbone conformations were very close to each
153 other, we simply aligned all known structures of each kinase and
154 visually identified the representative backbone structures that
155 represented all possible backbone variations in the ligand-binding
156 pocket of those structures using PyMol (www.pymol.org). For
157 large backbone ensembles and also for the purpose of automation,
158 the representative backbones can be selected using clustering
159 analysis.
160 Clustering. We cluster the ligand poses by root-mean-square
161 deviation (RMSD). Here, we compute the RMSD between two
162 ligands after aligning the two receptors. During the RMSD
163 calculation, we also consider the symmetry of atomswhere a
164 symmetric rotation does not change the physiochemical property
165 of the ligand, such as benzene ring flippingby taking the lowest
166 deviation among all such symmetric transformations. We use a
167 hierarchical clustering program, oc (www.compbio.dundee.ac.uk/
168 downloads/oc), to group similar poses using a cutoff distance
169 of 2.5 Å. A hierarchical clustering algorithm iteratively joins the
170 two closest clusters into one cluster according to the distances
171 between two clusters. The “cluster distance” is computed based
172 on all pairwise distances between elements of the two corre-
173 sponding clusters, which can be the minimum, maximum, or the
174 mean of all these values. In this study, we use the mean to com-
175 pute the distance between two clusters.
176 Ranking of Clusters. We use two different ranking
177 approaches to rank the clusters. In the first approach, we simply
178 calculate the average MeduaScore

∑⟨ ⟩ =E n E1/
i

ic c
179 (2)

180 Here, nc is the cluster size and Ei is the MedusaScore of pose
181 i within a cluster c. In the second approach, we compute the
182 effective free energy of each cluster

∑ ∑β β= − − −F E E E k T nexp( )/ exp( ) ln( )
i

i i
i

ic B c
183 (3)

184 Here, β is the reciprocal of kBT, ∼0.6 kcal/mol, which corre-
185 sponds to the thermal fluctuation energy at room temperature
186 (300 K).

187 ■ RESULTS
188 There were four receptor targets in the CSAR2011 docking
189 benchmark exercise, including checkpoint kinase-1 (chk1),

190extracellular-signal-regulated kinase 2 (erk2), N-acetylglucosamine
191deacetylase from Pseudomonas aeruginosa (lpxc), and urokinase.
192The sequences and reference structures were given by reference to
193existing experimental structures: chk1 (PDB ID: 2e9n), erk2
194(PDB ID: 3i5z), lpxc (PDB ID: 3p3e), and urokinase (PDB ID:
1951owe). For each target, ligands were provided in the smile format
196(47 for chk1, 39 for erk2, 16 for lpxc, and 20 for urokinase;
197www.csardock.org). The participants were allowed to use any
198information and methods to model the conformations of the bound
199complexes. For a subset of these ligands (Table 1), the crystal
200structures of the ligand−receptor complexes were solved and were
201used to compare with the blindly predicted poses submitted by
202the participants.
203Flexible Backbone Docking Using MedusaDock. We
204use MedusaDock27 to generate ligand-binding poses in a given
205receptor. MedusaDock models the flexibility of receptor side
206chains in the pocket but not the receptor backbones (Methods
207section). To incorporate backbone flexibility for the receptor
208structures, especially kinases known for large backbone conforma-
209tional changes upon ligand binding,6,8,29,30 we develop a simple flexi-
210ble backbone approach (Figure 1). First, we construct an ensemble
211of receptor backbone conformations. Because MedusaDock
212already considers the full receptor side chain flexibility in the
213binding pocket, which is found to tolerate small backbone varia-
214tions,27 we only include a small number of backbone conforma-
215tions that capture the backbone changes upon ligand binding. We
216use known receptor structures solved under different conditions
217to reconstruct the backbone ensemble for each target (Methods
218section). The backbone ensemble of chk1 includes PDB struc-
219tures of 2e9u, 2ghg, 2ym4, and 3nle; the ensemble of erk2
220includes PDB structures of 1tvo, 1wzy, 2ojg, 3i60, and 3sa0;
221and the lpxc ensemble includes PDB structures of 2ves, 3p3e,
222and 3u1y. We find significant backbone variation between the
223various structures of these flexible receptors (Figure 2). We use

Figure 2. Multi-backbone ensembles for flexible backbone docking.
The backbone structures in cartoon representation with different
colors are selected from the protein databank for different CSAR2011
receptor targets: (A) chk1, (B) erk2, and (C) lpxc. The PDB IDs for
the selected backbone structure are colored accordingly.
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224 only one backbone structure for urokinase (1owe) because all
225 known structures have very similar backbone structures.
226 Second, for each receptor backbone structure, we perform
227 100 independent MedusaDock docking simulations. Depending
228 on the number of degrees of freedom of the input ligand, each
229 MedusaDock run generates several poses27 and takes on aver-
230 age approximately 3−5 min on an Intel 2.6 GHz Xeon proces-
231 sor. All calculations can be done in parallel. Next, we rank all
232 poses for a given receptor backbone conformation according to
233 MedusaScore (Methodssection; eq 1). We collect the top Np

234 poses for a given receptor backbone structure and assemble all
235 selected poses (NbNp) from Nb backbone structures into a
236 single ensemble for further clustering (Figure 1). Clustering is
237 based on the RMSD between all pairs of poses, the calculation
238 time of which is proportional to (NbNp)

2. During the CSAR2011
239 exercise, we restricted NpNb to approximately 500 total poses. We
240 group similar poses using a hierarchical clustering approach with a
241 cutoff RMSD of 2.5 Å (Methodssection), and each cluster is
242 ranked according to the MedusaScore of poses within the cluster
243 (Methodssection). The centroid poses of the top three clusters
244 were submitted as CSAR2011 blind predictions.
245 Effective Selection of Native Poses Using Free Energy.
246 The CSAR2011 organizers allowed submission of more than

247one set of predicted poses, so that specific hypotheses can be
248tested. We tested two different approaches to score and rank
249the pose clusters (Methodssection). In the first approach, we
250simply score the cluster by the average MedusaScore (eq 2). In
251the second approach, we compute the effective free energy of
252the cluster, where the average potential energy is computed as
253the Boltzmann-weighted average of the MedusaScore, and the
254entropy contribution is computed as the logarithm of the cluster
255size (eq 3). We find that the scoring and ranking using the free
256energy outperforms that by the average energy (Table 1). In the
257case of free energy ranking, the lowest RMSD of the predicted
258three poses is within 2.5 Å for 28 out of 35 (80%) targets. The
259success rate of the predictions computed from the average energy
260is 26 out of 35. Therefore, scoring and ranking the clusters by the
261proposed free energy is a more accurate way to select near-native
262poses.
263Docking with Multiple Backbone Conformations
264Enriches Native-Like Poses. Our simple flexible backbone
265docking approach is composed of independent MedusaDock
266docking simulations with a set of predetermined backbone confor-
267mations, and thus, the number of calculations is proportional to
268the number of structures used. With ensemble docking, we sacri-
269fice additional required computational time in exchange for

Figure 3. Scatter plot of MedusaScore versus RMSD for chk1 ligand poses. The symbols with different colors denote docking poses generated with
different backbone conformations as shown in the legend. Panel (A) and (B) correspond to docking results of ligand #1 and #34, respectively. (C)
The results for the docking of ligand #29 that were initially given, which turned out to be different from the released structure. Panel (D)
corresponds to the docking result of the actual ligand #29, #29*. The two chemical structures of ligand #29 are given in the corresponding inserts.
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270 improved prediction accuracy. Next, we discuss the results of
271 docking for each receptor.
272 chk1. Bound structures have been solved experimentally for
273 chk1 with 14 different ligands (Table 1). Only in two cases
274 (ligand #29 and #34) do our free energy-ranked predictions not
275 succeed in identifying near-native poses. To illustrate the effect
276 of input backbone conformation on pose prediction, we present
277 in Figure 3 the scatter plot of MedusaScore versus RMSD for
278 the poses generated with different backbone conformations.
279 For example, in the case of ligand #1 (Figure 3A), the poses
280 generated from three backbone conformations (2e9u, 2ym4,
281 and 3nlb) feature a funnel-like binding/docking energy land-
282 scape, where the native−native poses have the lowest (most
283 favorable) MedusaScores. However, in the case of backbone
284 conformation of 2ghg, the generated near-native poses have
285 higher (less favorable) MedusaScores than other decoy poses.
286 Taken together, MedusaDock simulations with multiple back-
287 bones enable the accurate prediction of a near-native pose as
288 the top-ranked pose for ligand #1 (Table 1). For the failed case of
289 ligand #34, near-native poses were sampled for all input backbone
290 conformations but all had higher MedusaScores than the decoy
291 poses (Figure 3B). Interestingly, near-native poses of ligand #34
292 were top-ranked when utilizing the scoring method with average
293 energy (Table 1). Additionally, we noticed that the chemical

294structure of ligand #29 in the f inal released structure is dif ferent
295f rom that provided by the input smile (inserts of Figure 3C,D). We
296therefore performed flexible docking simulations for the revised
297structure of ligand #29 after its final release. Although dock-
298ing to the backbone of 3nlb did not sample near-native states
299(Figure 3D), the revised ligand structure enabled sufficient sampl-
300ing of near-native poses when docked to other backbone struc-
301tures (Figure 3D), achieving a near-native pose as the second-
302ranked pose (Table 1).
303erk2. Twelve erk2-ligand complex structures have been solved
304experimentally (Table 1). Our method recapitulated near-native
305poses for seven out of twelve cases. The relatively low success
306rate compared to chk1 may be a result of high backbone flexi-
307bility, which is manifested even in the success cases (Table 1;
308Figure 4). For example, near-native poses were sampled by
309docking only a small number of backbone conformations (e.g.,
310Figure 4A,B) as compared to chk1 (Figure 3). In other cases, the
311sampled near-native poses did not have clear separation from
312decoy poses in terms of MedusaScore (Figure 4B,D). However,
313using the clustering and ranking approach, we are able to select
314near-native poses from many decoys in the latter cases. These
315results (Figure 4), as well as those for chk1 (Figure 3), highlight
316the importance of incorporating multiple backbone conformations
317in the sampling of near-native poses with low MedusaScores.

Figure 4. Scatter plot of MedusaScore versus RMSD for erk2 ligand poses. The symbols with different colors denote docking poses generated
with different backbone conformations as shown in the legend. Four of the seven success cases are included: ligand #19 (A), #20 (B), #26(C),
and #39 (D).
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318 In five challenging cases (Figure 5, filled symbols correspond
319 to blind docking results for CSAR2011), the near-native states
320 were either rarely sampled (Figure 5B,E) or sampled but with
321 significantly less favorable MedusaScores than decoys (Figure
322 5A,C,D). We postulate that the failure to capture near-native
323 states with low MedusaScores is a result of insufficient sampl-
324 ing of backbone conformations in the receptor ensemble. The
325 question is whether docking with the released cocrystallized
326 backbone structure can enrich the near-native poses with low
327 MedusaScores? Therefore, we performed posterior MedusaDock
328 simulations with the released backbone conformation. Indeed, the
329 docking with experimentally determined cocrystallized backbone

330conformations enables the sampling of near-native poses in all
331challenging cases (Figure 5, plus symbols). If the cocrystallized
332backbone structures were included in the predetermined back-
333bone ensemble, the near-native poses of these challenging cases
334could have been selected by our clustering and ranking method
335as demonstrated by previous examples (Figures 3,4). Hence,
336the results of these difficult cases suggest that the sampling
337of backbone conformation in order to capture the backbone
338changes upon binding of specific ligands remains a significant
339challenge.
340lpxc and urokinase. The lpxc receptor has a zinc ion as the
341coligand in all existing structures. We include the zinc ion as a

Figure 5. Scatter plot of MedusaScore versus RMSD for erk2 ligand poses. The symbols with different colors denote docking poses generated with
different backbone conformations as shown in the legend. Five of the challenging cases are included: ligand #23 (A), #24 (B), #25(C), #27(D), and
#33 (E).
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342 fixed moiety during MedusaDock simulation. We recapitulate
343 near-native poses for both receptors (Table 1). In the case of
344 lpxc, all top-ranked poses correspond to near-native poses.

345 ■ DISCUSSION AND CONCLUSION

346 In order to model receptor backbone changes upon ligand
347 binding, we develop a simple multibackbone docking approach
348 using MedusaDock. Because MedusaDock is able to model the
349 full receptor side chain flexibility, we construct a relatively small
350 ensemble of protein backbone conformations for the region
351 near the ligand-binding pocket. The flexible side chain docking
352 approach used by MedusaDock can tolerate small backbone
353 changes, as shown in the previous cross-docking benchmark.27

354 For this reason, including a small number of backbone confor-
355 mations in the ensemble is most computationally efficient
356 because simulation time is directly proportional to the input
357 number of backbone conformations.
358 The major challenge in ensemble docking is to capture rele-
359 vant backbone changes upon ligand binding within the pre-
360 determined set of backbone configurations. For example, our pre-
361 constructed backbone ensembles for chk1, lpxc, and urokinase
362 (Table 1) are able to capture the corresponding backbone changes
363 upon binding of the given ligands, as suggested by the high
364 success rate of prediction of near-native poses (∼100%). How-
365 ever, the prediction rate for erk2 kinase is significantly lower
366 because the backbone structures are not well sampled by the
367 constructed backbone ensemble (Figure 5). In the current study,
368 we have utilized crystallographically determined receptor struc-
369 tures solved in complex with different ligands and under different
370 conditions. Protein structural ensembles derived from solution
371 NMR also provides useful information about protein backbone
372 dynamics,38 which can be used for the flexible docking approach.
373 With the growing number of protein and protein−ligand com-
374 plex structures deposited into the Protein Data Bank, this approach
375 will have a broad application to drug screening. In cases where a
376 limited number of experimentally solved structures are available,
377 computational modeling of receptor backbone structures can be
378 performed via homology modeling, molecular dynamics, or normal
379 model analysis. The sampling of backbone changes as well as the
380 choice of the optimal number of backbone conformations to use in
381 MedusaDock ensemble docking simulations is a subject for further
382 studies.
383 We group similar poses using a clustering algorithm and
384 develop a free energy-like scoring method to rank clusters of poses.
385 The new score thus considers both the average MedusaScore of
386 each cluster as well as the cluster size in ranking poses (eq 3). We
387 use a Boltzmann-weighted average of MedusaScores within a cluster
388 to compute the final score, where a pose with a lower (more
389 favorable) MedusaScore has a higher weight. The second term with
390 logarithm of the cluster size also favor the large cluster with many
391 similar poses, corresponding to thermodynamic states with large
392 number of microstates and thus high entropy. Our clustering and
393 ranking approach allows us to select near-native poses even when
394 their scores are not obviously separated from those of decoy poses
395 (e.g., Figures 3D and 4B,D). As the result, we are able to predict the
396 near-native poses for 28 out of 35 ligands, which corresponds to the
397 highest success rate of near-native pose predictions (<2.5 Å RMSD)
398 in the CSAR2011 docking benchmark exercise. We expect a broach
399 application of our fully flexible docking approach in pose prediction
400 for both biological study as well as rational drug design.
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