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SUMMARY

Protein-peptide interactions play important roles in
many cellular processes, including signal transduc-
tion, trafficking, and immune recognition. Protein
conformational changes upon binding, an ill-defined
peptide binding surface, and the large number of
peptide degrees of freedom make the prediction of
protein-peptide interactions particularly challenging.
To address these challenges, we perform rapid
molecular dynamics simulations in order to examine
the energetic and dynamic aspects of protein-
peptide binding. We find that, in most cases, we
recapitulate the native binding sites and native-like
poses of protein-peptide complexes. Inclusion of
electrostatic interactions in simulations significantly
improves the prediction accuracy. Our results also
highlight the importance of protein conformational
flexibility, especially side-chain movement, which
allows the peptide to optimize its conformation. Our
findings not only demonstrate the importance of
sufficient sampling of the protein and peptide con-
formations, but also reveal the possible effects of
electrostatics and conformational flexibility on
peptide recognition.

INTRODUCTION

Protein-peptide interactions play a key role in many cellular

processes, such as signaling, regulation, and the formation of

protein networks. Peptides are the substrates of many physio-

logical macromolecules, including major histocompatibility

complex, insulin degrading enzyme, and HIV protease. They

also mediate immune recognition and the induction of immune

response (Neduva et al., 2005). Protein-peptide interactions

have been exploited in various biotechnological and pharma-

ceutical applications, such as peptide-based therapeutics

(Vlieghe et al., 2010), biosensors, biomarkers (Hao et al., 2008),

and functional modulators of proteins (Karanicolas and Kuhl-

man, 2009). Therefore, understanding the molecular mechanism
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of protein-peptide recognition and having the ability to predict,

manipulate, and design novel protein-peptide interactions will

have broad applications in the fields of biology, medicine, and

pharmaceutical sciences.

High-resolution structure determination methods, such as

X-ray crystallography and nuclear magnetic resonance, have

offered atomic insight into the formation of the protein-peptide

complex. On the basis of available structures, both hydrophobic

and hydrophilic interactions, including hydrogen bonds and

salt-bridges, are important for stability of the protein-peptide

complex. Upon ligand binding, many receptor proteins change

their conformations, known as induced fit (Koshland et al.,

1958). Furthermore, peptides also experience ordering transi-

tions upon binding to their receptors (London et al., 2010).

However, the molecular mechanism of the recognition and

binding events that occur between the bound and unbound

states remains elusive. Computational modeling offers the

opportunity to directly observe the binding event and decon-

struct the determinants of protein-peptide recognition.

The modeling of protein-peptide complexes is most often

approached in two steps: (1) identification of the peptide binding

sites on a protein, and (2) determination of the native pose of

the peptide. A number of methods have been developed to

address the first step of modeling, according to sequence

(Lopez et al., 2007), structure (Brady and Stouten, 2000; Huang

and Schroeder, 2006; Liang et al., 1998), or both (Capra et al.,

2009). However, most structure-based methods do not consider

binding-induced conformational changes of the receptor. Only

a very limited number of blind docking (i.e., docking without

any prior information about the binding site) studies exist for

peptide binding in the literature. Autodock is a docking method

commonly used for blind peptide docking; however, the length

of the peptide is limited up to four residues (Hetényi and van

der Spoel, 2002). In another blind docking study, coarse-grained

modeling and four-body statistical pseudopotentials are

implemented (Aita et al., 2010); however, the binding sites in

the selected complexes are also usually the largest or second-

largest pockets in the protein (Aita et al., 2010). However, in

some cases, the peptide-unbound protein structures do not

have a well-defined pocket or the binding site is not one of

the largest pockets on the protein (Coleman and Sharp, 2010).

In addition, it has been suggested that electrostatic interac-

tions play an important role in the formation of the ‘‘encounter
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complex,’’ which is the metastable state prior to optimization of

the binding pose in the formation of the final complex (Sheiner-

man et al., 2000; Suh et al., 2007; Tang et al., 2006). Considering

the net charge variation on protein and peptide surfaces, the

electrostatic contribution to peptide recognition can vary from

case to case; for example, electrostatics is the major determi-

nant in Calmodulin-peptide recognition (André et al., 2004),

whereas it has been proposed that electrostatic interactions

have no role in PDZ domain-peptide interaction (Harris et al.,

2003). The questions remain as to what degree electrostatic

interactions contribute to peptide recognition and how the

binding site is identified without prior knowledge of peptide-

binding-induced conformational changes.

The second step of the protein-peptide recognition problem

is often referred to as the docking problem. Flexible docking

methods considering both ligand and receptor conformational

flexibilities are believed to increase the accuracy of predicting

the native pose of small molecules and peptides (Anderson

et al., 2001; Antes, 2010; Davis and Baker, 2009; Ding et al.,

2010). However, the conformational space of peptides is signif-

icantly larger than that of small molecules because of a larger

number of rotatable bonds. As a result, most flexible docking

methods developed for small molecules are not applicable in

determining protein-peptide binding poses. Moreover, the

modeling of protein conformational flexibility, including side-

chain or backbone flexibility or both, is computationally expen-

sive (Carlson and McCammon, 2000). Hence, a crucial step in

the efficient modeling of protein-peptide interactions is to

determine the optimal level of protein conformational flexibility

required in order to accurately define the correct binding pose.

In order to address these issues, we conduct systematic studies

of peptide binding to the peptide-unbound receptor state, at

various levels of receptor flexibility.

Molecular dynamics (MD), with its accurate description of

atomic interactions, can be employed to study protein-peptide

binding. However, the time scale accessible to traditional MD

simulations limits their broad applications in MD-based peptide

binding prediction (Shan et al., 2011). On the other hand,

all-atom discrete molecular dynamics (DMD) can accurately

and efficiently fold small, fast-folding proteins (Ding et al.,

2008) and sample the conformational dynamics of protein

complexes (Karginov et al., 2010; Proctor et al., 2011). We use

replica exchange all-atom DMD simulations (Ding et al., 2008)

to study protein-peptide binding in a set of ten protein-peptide

systems. We perform a set of replica simulations for each

system, where the receptors initially are in the unbound state,

with varying levels of protein side- and main-chain confor-

mational flexibility. In order to study the effect of long-range

electrostatics on peptide binding site recognition, we conduct

sets of simulations in both the presence and absence of

these interactions. Our computational studies reveal the

important contributions of electrostatics and conformational

flexibility in protein-peptide binding. Our findings suggest that

electrostatic interactions may be the driving force for the

formation of an energy landscape favoring the native-like

structure, independent of any conformational change of the

protein. For nine of ten complexes, we capture the native pep-

tide binding site area, and in several cases we also recapitulate

the near-native binding pose.
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RESULTS

We perform replica exchange DMD simulations of ten experi-

mentally well-characterized protein-peptide complexes (see

Table S1 available online). No prior knowledge of the binding

site location or peptide binding pose is assumed in simulations;

we use the peptide-unbound structure (i.e., the apo-structure) of

the receptor, and the peptide is initially positioned randomly with

respect to the receptor (Figure S1A). In order to evaluate the

effect of conformational flexibility on the accurate modeling of

peptide binding, we vary the level of receptor flexibility in simu-

lations: (1) rigid receptor, where both side- and main-chain of

the protein apo-structure are fixed; (2) flexible side-chain, where

the side-chains of the apo-structure are allowed to move; and (3)

flexible receptor, where we allow the side-chains to move freely

but assign a bias potential to the backbone a-carbons, favoring

the native apo-structure contacts. The protein backbone is

therefore able to sample conformations near the apo-state.

Recapitulation of Experimental Binding
We first test whether our simulation methods are able to recapit-

ulate the experimentally observed protein-peptide complexes. In

our simulations, the peptide randomly diffuses and forms both

nonnative and native contacts with the protein. We select for

analysis only those complex structures in which the peptide

and the protein are in contact, which we define as any heavy

atom of the peptide being within a distance of 5.5 Å from any

heavy atom of the receptor (Figure S1B). We then perform

hierarchical clustering of the peptide binding conformations

using root-mean-square distances (RMSD) calculated over all

heavy atoms of the peptides (Figure S1C). Finally, we select

the lowest energy poses from the highly populated clusters as

the putative peptide-binding poses, and calculate the heavy-

atom RMSDs of the peptide conformation with respect to the

native pose (Figure S1D).

In the case of the PDZ domain-peptide complex (PDB ID:

1BFE), we observe a significant fraction of native-like popula-

tions in the flexible side-chain simulation. As illustrated in a

typical trajectory starting from the unbound state (gray dots in

Figure 1A), the peptide randomly collides with the protein and

forms transient complexes (scattered solid dots in Figure 1A).

Once the native binding site is sampled (�30 ns), the peptide

forms a metastable ‘‘encounter-complex’’ (Sheinerman et al.,

2000; Suh et al., 2007; Tang et al., 2006), which allows further

conformational rearrangement of the system in order to form

the native-like binding complex (�40 ns; RMSD�2–3 Å). In order

to identify the binding poses, we collect all bound states from

each of the eight replicas (Figure 1B). Without knowledge of

the native binding pose, we select the putative binding ensemble

of the peptide in the context of the energy landscape (Figure 1C).

Here, we use MedusaScore (Yin et al., 2008) in order to evaluate

the energy of binding between the peptide and the protein.

MedusaScore is based on interatomic interactions, including

van der Waals, solvation, hydrogen bonding, and electrostatic

interactions. The PDZ domain-peptide complex features a

well-defined funnel-like energy landscape; lower RMSD results

in a more favorable binding energy. Notably, the minimum

energy peptide pose in the complex has the minimum RMSD

from the native pose (Figure 1C). Furthermore, we perform
All rights reserved



Figure 1. Analysis of Flexible Side-Chain Simulation of PDZ-Peptide Complex

(A) RMSD values of peptide conformations with respect to the crystallographic pose of the peptide for peptide-bound (black) and peptide-unbound (gray) states

from a representative replica. If any atom of the peptide is within 5.5 Å of any atom of the protein in the trajectory, then that snapshot is considered as a peptide-

bound conformation.

(B) The backbone of PDZ domain is fixed during simulation, and we reconstruct all peptide-bound states from the simulation trajectories. The positions of the

peptide in each peptide-bound frame are displayed in ribbon diagrams. The hit map of peptide interactions with the protein corresponds to the frequency with

which the peptide atoms interact with the protein atoms, and these interactions range from very frequent (red) to very infrequent (blue).

(C) Energy landscape with the interface energy between the peptide and protein in terms of MedusaScore.

(D) The lowest energy conformation (magenta) of the peptide from the largest cluster and its experimental pose (black). See also Figure S1.
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clustering analysis of the bound conformations. We observe

that peptides are present in the native binding site if their

RMSD from the native pose is lower than 10 Å. Therefore, we

use 10 Å as our clustering cutoff (it is 15 Å for 1JBE in which

the peptide is 13-mer). The most highly populated clusters

correspond to the low free-energy states. For these highly popu-

lated clusters, we select the pose with the lowest MedusaScore

as the representative structure, and we compare that structure

with the crystal structure. The representative structure of the

most highly populated cluster of the PDZ domain-peptide

complex has a RMSD of 2.5 Å from the crystal structure pose

(Figure 1D). Thus, we obtain a native-like conformation of the

PDZ domain-binding peptide without any knowledge of the

binding site, the conformation of the peptide, or the bound-state

structure of the protein.

In molecular dynamics simulations, the most-populated

cluster corresponds to the lowest free-energy state, which is

not always the state with the lowest potential energy. In proteins

with more than one potential binding site, the energy landscapes

demonstrate different trends from those of proteins with only

one binding site (Figures 1 and 2). If multiple binding sites are
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identified during simulations, clustering analysis is necessary

to determine the lowest free-energy binding state. In the case

of Keap1-peptide complex (PDB ID: 1X2J), the minimum

energy pose from the most populated cluster is associated

with the native-like conformation, but it does not correspond to

the global minimum energy, whereas the lowest energy pose

from the entire trajectory (from the second most-populated

cluster) suggests a different binding site (Figure 2). Using our

clustering analysis, we are able to obtain a conformation simi-

lar to the native pose of the peptide in the Keap1-peptide

complex.

We perform similar analysis on six additional protein-peptide

complexes. For each complex, we report the clustering results

(Table S2). Except in the case of 2ZGC, we identify the native

binding site from within the first two most-populated clusters

(Table 1; Figure S2). In addition, we test twomore cases of longer

peptides that form secondary structure in the bound form (PDB

IDs: 1RWZ and 1JBE). For these two cases, we can recapitulate

the binding sites of the protein and the helical structure of the

peptides in the bound conformation (Figure S3). Our ability to

identify the native binding site of the peptide from an arbitrary
45, December 7, 2011 ª2011 Elsevier Ltd All rights reserved 1839



Figure 2. Analysis of Flexible Side-Chain Simulation of Keap1-

Peptide Complex

Two binding sites exist for this peptide, as exhibited by two low-energy

clusters in the energy landscape. The purple ribbon is the lowest energy

peptide pose from the most populated cluster, whereas the black ribbon is the

experimentally determined pose. The global minimum energy corresponds to

the red conformation; however, that state is less populated than the purple

conformation. For the results of all complexes, see also Figures S2 and S3.
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initial position highlights the sampling efficiency of DMD simula-

tions and the accuracy of our all-atom force field.

Electrostatic Interactions May Be Necessary for the
Identification of the Native Peptide-Binding Site
To test the effect of electrostatics on protein-peptide recogni-

tion, we also perform simulations without electrostatic interac-

tions (Table 2). Here, we use the Debye-Hückel approximation

to model screened electrostatic interactions between charged

residues (Experimental Procedures). We find a significant

improvement in the prediction of the binding site and native

pose of peptides with the addition of electrostatics to the force

field (Tables 1 and 2). In the absence of electrostatics, we

observe decoy-binding poses that correspond to lower energies

than that of the native pose. With the addition of electrostatics,

the number of favorable decoys decreases and the size of the

native-like population increases. For example, in most simula-

tions, we observe that with the addition of electrostatics, the

native-like state becomes the most populated state, as opposed

to the second most populated state when electrostatics is not

included. However, we do not observe a significant difference
1840 Structure 19, 1837–1845, December 7, 2011 ª2011 Elsevier Ltd
in the selected binding pose between simulations with and

without electrostatics in the cases of PDZ domain and Serine

proteinase K (PDB ID: 2ID8). Our observed nil effect of electro-

static interactions in the special case of peptide recognition by

PDZ domain is consistent with experimental observation (Harris

et al., 2003). We conclude that, for the majority of protein-

peptide complexes, long-range electrostatic interactions play

an important role in protein-peptide recognition in simulations

by guiding the peptide toward the binding site.

Modeling of Protein Side-Chain Flexibility Is Necessary
for Accurate Peptide Binding Pose Prediction
To investigate the effect of protein conformational dynamics on

protein-peptide recognition, we compare binding simulations

with increasing levels of receptor conformational flexibility: fixed

receptor, flexible side-chain, and flexible receptor constraints

(Table 1). In the fixed receptor simulations, we correctly identify

the binding sites of all cases except for the PUB domain of

PNGase (PDB ID: 2HPJ), the Src SH3 domain (PDB ID: 1SRL),

and Granzyme M (PDB ID: 2ZGC). The accuracy of the predic-

tions is significantly increased in these cases if we implement

a protocol featuring increased flexibility of the protein receptor

(flexible side-chain or flexible receptor). Interestingly, there is

no significant difference in the accuracy of binding site prediction

between the flexible side-chain and flexible receptor models.

However, the inclusion of backbone flexibility in the flexible

receptor simulations significantly increases the computational

time; the inclusion of only side-chain flexibility is sufficient to

predict the peptide-binding pose. Therefore, we find that flexible

side-chain fixed backbone simulations with electrostatic inter-

actions have the most promising results for peptide binding

determination, considering the compromise of decreased

RMSD of the predicted binding poses from the native pose

(compared to fixed receptor) and the decreased computational

time required for sampling (compared to flexible receptor).

DISCUSSION

On the basis of the results of our simulations (Tables 1 and 2;

Table S2), we propose a two-step peptide binding mechanism.

The binding process includes random collisions of the peptide

with various regions of the protein surface. If the peptide encoun-

ters a site withwhich it has favorable interactions, thermodynam-

ically it will remain in this site to form the metastable ‘‘encounter

complex’’ (Sheinerman et al., 2000; Suh et al., 2007; Tang et al.,

2006), which allows the system to find an energetically optimal

conformation. In terms of finding the binding site, our results

suggest that electrostatic interactions may play an important

role in many cases, considering the fact that the majority of

peptides contain charged residues. Even in peptides with no

charged residues, the amino and carboxyl termini are always

charged, making the peptide highly polar. Therefore, it is not

surprising that even in fixed receptor simulations, the addition

of electrostatic interactions significantly improves the prediction

of the peptide-binding site on the receptor (Tables 1 and 2). This

observation suggests that long-range electrostatic interactions

guide the peptide toward the peptide-binding surface site, which

does not require the formation of a complementary receptor

surface. In the absence of electrostatics, the energy well
All rights reserved



Table 1. RMSD Values and Cluster Population Percentages in the Presence of Electrostatic Interactions

PDB ID

Fixed Receptor Flexible Side-Chain Flexible Receptor

1st Cluster 2nd Cluster 1st Cluster 2nd Cluster 1st Cluster 2nd Cluster

1BFE 8.80 9.39 2.51 (1.0) 11.31 3.19 –

36.5% 5.2% 70.8% 12.9% 49.2% –

1DDW 5.74 9.74 7.14 (6.49) 7.01 10.04 5.67

26.8% 21.8% 34.9% 15.5% 12.7% 8.5%

1CL5 11.56 22.07 8.27 (7.17) 26.21 6.57 4.85

16.5% 5.0% 19.8% 5.4% 14.6% 14.4%

2HPJ 4.93 – 3.26 (3.25) – 4.46 –

71.2% – 51.9% – 64.9% –

1X2Ja 10.25 26.53 34.49 10.5 (8.02) 9.36 36.26

57.4% 4.5% 24.7% 17.0% 22.6% 11.7%

1SRL 8.31 22.74 7.73 (5.48) 20.14 6.98 10.12

34.9% 10.8% 11.6% 10.6% 12.1% 7.9%

2ID8 6.69 24.22 9.59 (9.03) 33.50 11.87 –

31.7% 18.8% 35.7% 5.0% 54.2% –

2ZGC 37.59 35.36 24.04 (23.7) 22.51 21.82 26.73

18.2% 9.4% 27.3% 6.7% 10.8% 5.5%

1RWZ 7.21 20.9 6.43 (5.77) 33.9 n/a n/a

26.2% 14.6% 29.4% 11.9% n/a n/a

1JBE 12.91 23.1 12.94 (10.5) 29.16 n/a n/a

71.5% 3.8% 44.2% 25.9% n/a n/a

Heavy atom RMSD values are given on the first line of each row, and population sizes in terms of percentage are given on the second line, for each

protein-peptide complex (see also Table S1). Backbone RMSD (Å) is given in the parentheses for the flexible side chain simulations. We report data for

only the largest two clusters. The number of clusters is dependent on the cluster population distribution; we report the clusters having a significant

number of samples in Table S2. The bolded values belong to conformations with RMSD lower than 10 Å.
a The peptide in this complex is a nonamer; therefore, RMSD value of the predictions are expectedly higher.
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corresponding to the native-like pose is broad and has a higher

energy than that of the decoy pose (Figure 3). However, when we

include electrostatics in the force field, we observe a lower

energy well for the native-like states (Figure 4). Finally, the addi-

tion of conformational flexibility provides additional definition to

the energy landscape, as well as narrows and lowers the energy

well (Figure 4). Therefore, in simulations, both electrostatics and

flexibility of the protein receptor are necessary for forming the

energetic landscape of peptide binding.

According to our results, peptides are able to find the binding

site inmany caseswith a fixed receptor. This finding is consistent

with a recent study (London et al., 2010) that systematically

compared the bound and unbound forms of protein structures

upon peptide binding. London et al. (2010) found that, in 86%

of cases, the protein does not significantly change its conforma-

tion upon peptide binding. The peptide binds to the protein by

minimizing the conformational change of the protein, while maxi-

mizing the enthalpy gained by hydrogen bonds and packing.

Thus, the peptide, rather than the protein, undergoes induced

fit, because it adapts its conformation to the binding site of the

protein. This phenomenon is different from small-molecule

binding, where proteins adopt their conformations upon ligand

binding (Mobley and Dill, 2009), because small molecules are

relatively rigid in comparison to peptides. However, there may

be some exceptional cases where a large conformational

change occurs upon peptide binding. In the case of PCNA-
Structure 19, 1837–18
FEN-1-peptide complex (Figure S3A), the C-terminal flexible

loop of PCNA forms b strands with the N terminus of the peptide

upon binding, resulting in an average RMSD of 3.5 Å with respect

to the unbound conformation, whereas the C terminus of the

peptide forms a helical secondary structure. This peptide-

binding-induced conformational change in the protein is sug-

gested as the structural basis for the allosteric control of

enzyme activities in DNA mismatch repair (Chapados et al.,

2004). In our simulations, we are able to predict the correct

binding site for the peptide and its helical secondary structure

(1RXZ), (Figures S3A–S3D), but the prediction of the ligand-

binding-induced protein backbone changes remains a major

challenge. As an additional analysis, we also calculate the size

of pockets/cavities on the proteins using the CASTp server

(Dundas et al., 2006) to check whether the peptide always

binds to the largest pockets. According to these results (Table

S5), the binding site is located in the largest pocket only in

1CL5. The binding sites of 2PQ2 and 2ZGC are the second-

largest pockets on their surfaces, the binding sites of 1DDV

and 2HPJ are in the fourth-largest pockets, and the binding

sites of 1BFE, 1SRL, and 1X2J are not located in any of the

five largest pockets.

The same protein can populate multiple binding modes (Bird-

sall et al., 1989; Ma et al., 2002). Conversely, a ligand can bind

to a target with multiple conformations because of symmetries

in the ligand or receptor protein (Mobley and Dill, 2009). For
45, December 7, 2011 ª2011 Elsevier Ltd All rights reserved 1841



Table 2. RMSD Values and Cluster Population Percentages in the Absence of Electrostatic Interactions

PDB ID

Fixed Receptor Flexible Side-Chain Flexible Receptor

1st Cluster 2nd Cluster 1st Cluster 2nd Cluster 1st Cluster 2nd Cluster

1BFE 12.34 18.12 1.51 6.40 2.96

29.4% 5.4% 70.2% – 9.0% 6.7%

1DDW 5.74 9.74 6.25 6.25 7.51 25.76

26.8% 21.8% 34.1% 18.5% 26.9% 13.2%

1CL5 11.66 21.99 11.25 6.80 7.84 6.40

24.2% 12.1% 11.9% 11.1% 20% 7.6%

2HPJ 25.51 25.75 18.51 4.70 17.08 24.31

23.3% 13.7% 25.5% 16.9% 17.7% 9.3%

1X2J 10.72 34.01 9.73 39.93 7.41 39.37

30.5% 17.1% 19.3% 14.4% 16.9% 11.2%

1SRL 15.59 9.78 20.85 20.96 14.86 19.76

14.1% 10.3% 6.7% 4.8% 3.6% 3.4%

2ID8 6.69 24.34 9.93 21.24 10.28

31.7% 18.8% 20.2% 5.2% 72.3% –

2ZGC 31.18 19.80 33.79 22.25 37.31 24.55

8.7% 7.3% 35.8% 3.7% 8.9% 4.0%

The electrostatic interactions in the force field are removed, and we perform simulations with conformational constraints similar to those in

Table 1. Heavy atom RMSD values (Å) are given on the first line of each row, and population sizes in terms of percentage are given on the second

line, for each protein-peptide complex. We report data for only the largest two clusters. The number of clusters is dependent on the cluster popula-

tion distribution; we report the clusters having a significant number of samples (Table S2). The bolded values are the conformations with RMSD

lower than 10 Å.

Figure 3. Proposed Model for the Structural and Dynamic Determi-

nants of Peptide Recognition

The dotted line represents binding without electrostatic interactions. The

dashed line represents binding with electrostatic interactions. In the presence

of electrostatics, the number of decoy states decreases, whereas the native-

like funnel becomesmore populated. The solid line represents the binding with

both electrostatic interactions and conformational flexibility. Here, the native-

like funnel experiences more sampling and a decrease in its energy.
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example, similar amino acids on the two termini of a peptide can

result in a flipped conformation relative to the X-ray structure.

Although observing multiple binding modes is rare (Constantine

et al., 2008; Lazaridis et al., 2002; Montfort et al., 1990), some

studies showed multiple-mode binding without a symmetry

effect (Jayachandran et al., 2006; Lazaridis et al., 2002; Oosten-

brink and van Gunsteren, 2004); for instance, we observe

multiple binding modes in our simulations of Keap1-peptide

complex (Figure 2). In the case of the Granzyme M-peptide

complex, we cannot recapitulate the crystal structure binding

site, but instead the peptide binds to a completely different

region of the protein surface. Examination of the peptide-bound

structure shows that there is a large conformational change in

the binding site of Granzyme M upon binding of the peptide

(Wu et al., 2009). However, the possibility remains that the

identified binding site is an alternative to the crystallographic

site for Granzyme M (Wu et al., 2009).

We also address the question of whether we can improve

prediction accuracy by performing additional sampling in the

vicinity of the binding site. We initiate sampling using the

receptor conformation from the simulation using the flexible

side-chain model with electrostatic interactions. We constrain

the peptide near the binding site and perform replica exchange

simulations with two types of flexible receptor models: (1) flexible

side-chain and (2) flexible receptor. We do not observe a sig-

nificant increase in prediction accuracies; the sampling used in

the initial simulations is already sufficient to identify the binding

site and near-native pose of the peptide (Table S3). In addition,

to improve the prediction accuracy, we perform molecular

docking using MedusaDock (Ding et al., 2010) for the seven

cases in which we were able to obtain the native binding site
1842 Structure 19, 1837–1845, December 7, 2011 ª2011 Elsevier Ltd
(Table 3; Figure 4). Interestingly, for the complexes in which we

predict native-like poses with DMD simulation alone (PDB IDs:

1BFE and 2HPJ), we do not observe a decrease in RMSD

values after refining with MedusaDock. Only in the case of

Phospholipase A2 (PDB ID: 1CL5) does the MedusaDock

refinement result in a significantly improved binding pose, with

RMSD decreased from 8.3 Å to 3.7 Å. In the other four cases,
All rights reserved



Figure 4. MedusaDock-Refined Experimental and Predicted Conformations

(A–E) Using MedusaDock, we improve the prediction accuracy of 1DDV (A), 1PRM (B), 1X2R (C), 2FNX (D), and 2PQ2 (E) complexes. The selected conformations

from the simulations with flexible side-chain constraints in the presence of electrostatics are employed as initial conformations for docking optimization. Shown

are the native binding pose (black) and the predicted binding pose before (magenta) and after (blue) docking refinement.
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we observe only minor improvement in prediction, with the top

five MedusaDock predicted poses having slightly lower RMSDs

than those obtained with simulation alone (Table 3; Figure 4). To

test whether another peptide docking method will improve the

optimization of the peptide pose, we perform a similar procedure

with the FlexPepDock server (Raveh et al., 2010) and PepSite

(Petsalaki et al., 2009). FlexPepDock (Raveh et al., 2010) is a

freely available peptide docking protocol that is proposed to

refine peptide binding poses. According to FlexPepDock results,

compared to the initial poses, we do not observe significant

improvement in terms of the RMSD values (Table 3). The Pepsite

algorithm is knowledge based and incorporates information

from known protein-peptide complexes according to spatial

position-specific scoring matrices (S-PSSMs) to identify the

binding preference of amino acids onto protein surfaces (Petsa-

laki et al., 2009). The surface of the protein is then scanned using

this matrix to find potential binding sites for the peptide.

Conversely, our algorithm, replica exchange DMD, is a physical

method that does not rely on any protein-peptide complex

structural information. The Pepsite server provides predictions

of potential binding sites for each individual residue in the

peptide and the top nine conformations of the peptide. For

1BFE, 1CL5, 2HPJ, 2ID8, 2ZGC, 1RWZ, and 1JBE, the server

cannot correctly predict the binding sites of any residues (Table

S5). In 1DDW, only the location of one proline residue is pre-

dicted correctly at the third highest rank. For 2ZGC, the binding

site of Lysine is predicted at the seventh rank. We conclude

from these results that, at least for certain targets, existing

protein-peptide complex information is not sufficient to provide

an adequate knowledge base for evaluation. In addition, the
Structure 19, 1837–18
accurate prediction of native-like peptide binding poses, espe-

cially for long peptides, remains a challenging task.

Conclusions
The prediction of peptide binding poses is one of the most

challenging problems in computational structural biology

because of the large number of peptide degrees of freedom.

Here, we have developed a protein-peptide docking procedure

that allows us to identify the peptide-binding region of proteins,

as well as a near-native pose of the peptides. The direct obser-

vation of peptide binding in simulations reveals a possible two-

step protein-peptide recognition mechanism. The initial step,

the route of the peptide to the binding site to form the meta-

stable ‘‘encounter complex,’’ is suggested to be guided by elec-

trostatics. Electrostatic interactions determine the formation of

a funnel-like energy landscape directed toward the native

binding site. In most cases, recognition of the binding site on

the receptor surface does not depend on whether the protein

is in the binding-competent state. The second step corresponds

to the docking of the peptide on the protein surface, which

requires conformational change of the receptor in order to reach

the nativelike binding pose. Our benchmark study suggests that

the flexible receptor side-chain model is the optimal method to

identify the peptide binding site and to search for the near-native

binding pose; however, the fixed receptor approach may be

sufficient to identify the approximate peptide binding site. The

proposed method both aids in the understanding of the

protein-peptide interaction mechanism and can also be used

for various biotechnological purposes, including the design of

peptide-based drugs and protein-peptide interfaces.
45, December 7, 2011 ª2011 Elsevier Ltd All rights reserved 1843



Table 3. RMSD with Respect to Native Pose Before and After

Molecular Docking

PDB ID Initial MedusaDock FlexPepDock

1BFE 2.51 2.85 (2) 2.49 (4)

1DDW 7.14 5.98 (5) 6.83 (3)

1CL5 8.27 3.73 (4) 7.42 (1)

2HPJ 3.26 5.05 (2) 3.02 (1)

1X2J 10.51 8.33 (4) 9.56 (4)

1SRL 7.73 5.71 (4) 6.83 (3)

2ID8 9.59 6.70 (1) 9.80 (3)

The predicted conformations from the simulations with flexible side-chain

constraints are used as initial conformations for docking calculations.

We report the lowest RMSD values (Å) from the top five lowest energy

conformations and their rank in predicted models predicted by Medusa-

Dock and FlexPepDock. We also compare our results with castP and

PEPSITE server (Table S5).
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EXPERIMENTAL PROCEDURES

We provide a flowchart of our procedure in the Supplemental Information

(Figure S1D).

Data Set

We select proteins that have both holo (cocrystallized with a peptide) and

apo (crystallized without a peptide) structures available (Table S1). Our data

set includes PDZ domain (PDB ID: 1BFE), homer evh1 (PDB ID: 1DDW), Src

SH3 domain (PDB ID: 1SRL), Keap1 (PDB ID: 1X2J), Phospholipase A2 (PDB

ID: 1CL5), p97/PNGase (PDB ID: 2HPJ), serine proteinase K (PDB ID: 2ID8),

Granzyme M (PDB ID: 2ZGC), PGNC (PDB ID: 1RXZ), and CheY (PDB ID:

1JBE). We place the peptide at a randomly selected position around the

unbound state of the protein.

All-Atom Replica Exchange DMD

Discrete molecular dynamics (DMD) is an event-driven molecular dynamics

simulation engine in which interatomic interactions are approximated by

square well potentials (Dokholyan et al., 1998). We model proteins using

the united atom representation, where all heavy atoms and polar hydrogen

atoms are explicitly modeled (Ding et al., 2008). Wemodel van derWaals inter-

actions using the Lennard-Jones potential and solvation interactions using the

Lazaridis-Karplus solvation effect (Lazaridis and Karplus, 1999). All of these

continuous functions are discretized by multistep square well functions.

In addition to the previous version of the all-atomDMD force field (Ding et al.,

2008), we also incorporate electrostatic interactions between charged resi-

dues, including basic and acidic residues (Ding et al., 2010). We assign integer

charges to the central atoms of charged groups: CZ for Arg, NZ for Lys, CG for

Asp, and CD for Glu. We use the Debye-Hückel approximation to model the

screened charge-charge interactions. The Debye length is set at 10 Å by

assuming a monovalent electrolyte concentration of 0.1 mM. We use 80 as

the relative permittivity of water in order to compute the screened charge-

charge interaction potential. We discretize the continuous electrostatic

interaction potential with an interaction range of 30 Å, where the screened

potential approaches zero.

We employ the replica-exchange sampling scheme (Okamoto, 2004;

Zhou et al., 2001) to overcome energy barriers while maintaining conforma-

tional sampling corresponding to the relevant free-energy surface. In replica

exchange computing, multiple simulations or replicas of the same system

are performed in parallel at different temperatures. The individual simulations

are coupled through Monte Carlo-based exchanges of simulation tempera-

tures between replicas at periodic time intervals. We perform simulation

replicas with temperatures ranging from 0.50 kcal/(mol$kB) (approximately

250 K) to 0.75 kcal/(mol$kB) (approximately 375 K), with an increment of

0.035 kcal/(mol$kB) (approximately 17.5 K). The length of each simulation is

106 time units, corresponding to approximately 50 ns. In addition, wall clock

and CPU hours for simulations are provided in Table S4.
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For refinement, we use MedusaDock (Ding et al., 2010), which is a flexible

docking method that allows simultaneous modeling of both ligand and

receptor flexibility with a set of discrete rotamers. We employ as initial

structures the predicted poses from the flexible side-chain simulations with

electrostatics. For all cases, the heavy-atom RMSD values from the experi-

mentally determined conformation decrease significantly, approaching the

nativelike pose (Table 3; Figure 3).

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and five tables and can be

found with this article online at doi:10.1016/j.str.2011.09.014.
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