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Abstract 
Nanoparticles (NPs) have been experimentally found to either promote or inhibit amyloid 
aggregation of proteins, but the molecular mechanisms for such complex behaviors remain 
unknown. Using coarse-grained molecular dynamics simulations, we investigated the effects of 
varying strength of nonspecific NP-protein attraction on amyloid aggregation of a model protein, 
the amyloid-beta peptide implicated in Alzheimer’s disease. Specifically, with increasing NP-
peptide attraction, amyloid aggregation on the NP surface was initially promoted due to 
increased local protein concentration on the surface and destabilization of the folded state. 
However, further increase of NP-peptide attraction decreased the stability of amyloid fibrils and 
reduced their lateral diffusion on NP surface necessary for peptide conformational changes and 
self-association, thus prohibiting amyloid aggregation. Moreover, we found that the relative 
concentration between protein and NPs also played an important role on amyloid aggregation. 
With a high NP/protein ratio, NPs that intrinsically promote protein aggregation may display an 
inhibitive effect by depleting the proteins in solution while having a low concentration of the 
proteins on each NP’s surface. Our coarse-grained molecular dynamics simulation study offers a 
molecular mechanism for delineating the contrasting and seemingly conflicting effects of NP-
protein attraction on amyloid aggregation and highlights the potential of tailoring anti-
aggregation nanomedicine against amyloid diseases. 

Introduction 
With the rapid development of nanotechnology and the increasing ability to engineer 
nanoparticles (NPs) with diverse functionalities,1 much work has been done to exploit the 
potential use of these novel materials in biomedicine. Applications of nanomedicine range from 
diagnosis to treatment, impacting drug delivery,2–6 imaging,7–10 biosensing11 and oxidative stress 
remediation.12 Once administrated into biological systems such as the plasma, NPs become 
surface-coated with sugars, lipids and proteins rich in the media. The molecular complexes with 
single or multiple layers of biomolecules absorbed onto the NP surface are termed NP-protein 
corona.13 The formation of the protein corona can screen the designed functionality of the NPs14 
and binding of immunoproteins like opsin may elicit immune responses.15 The interactions 
between NPs and proteins can also induce protein conformational changes to subsequently affect 
their functions,16,17 leading to possible toxic effects.18–22 Therefore, it is important to understand 
NP-protein corona formation and its impact on adsorbed proteins in order to enable the design 
and vast application of nanomedicine. 

Because of the high local concentration of proteins in the corona, NPs have been found to 
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promote aberrant aggregation of β-2 microglobulin, an amyloidogenic protein in serum.23 
Misfolding and amyloid aggregation of proteins are associated with a wide range of diseases, 
including Alzheimer’s and Huntington’s diseases. The amyloid aggregates of different 
amyloidogenic proteins share the same characteristic cross-β structure, where misfolded proteins 
form extended β-sheets along the fibril axes.24–29 Many recent studies suggest that intermediate 
oligomers populated along the aggregation pathway rather than the final amyloid fibrils are 
cytotoxic.30–32 Motivated by the possibility of NPs to cross the blood-brain-barrier,33–36 much 
effort has also been devoted to understanding the effect of NPs on protein aggregation in 
neurodegenerative diseases, such as that of amyloid-beta peptide (Aβ) in Alzheimer’s 
disease.23,37–45 Motivated by advancements in nanotechnology and nanomedicine, many studies 
have been focused on understanding the impact of NPs with various physicochemical properties 
on protein aggregation, in order to identify novel NPs that inhibit amyloid aggregation. For 
instance, drug delivery using NPs with inhibitory effects on amyloid aggregation will have 
additional therapeutic effects in treating protein misfolding diseases. 

Given the diversity of NPs and proteins used in existing experimental studies, both 
aggregation inhibition and promotion effects have been reported. Amyloid aggregation is a 
nucleation process, which is characterized by a lag time followed by a sigmoid increase of 
amyloid fibrils.46 It has been showed that various NPs, including copolymer particles, cerium 
oxide particles, quantum dots, and carbon nanotubes, enhanced fibril formation of β2-
microglobulin with a shortened aggregation lag time.23 Similar effect was seen when TiO2 NPs 
were introduced to the Aβ solution.43 It has been suggested that NPs locally increased protein 
concentration which enhanced the probability of critical aggregation nucleus formation.38–40 On 
the other hand, the fibrillation of Aβ and islet amyloid peptide (IAPP, a.k.a. amylin) was 
inhibited by adding polymeric NPs.23,44 Single-walled carbon nanotubes were able to prevent the 
formation of β-sheets of Aβ.47 Similarly, negatively charged gold NPs were reported to inhibit 
Aβ fibrillization and relieve Aβ toxicity to neuroblastoma.45 Interestingly, it was also reported 
that, for the same polystyrene NPs, amyloid aggregation of Aβ was promoted at a high protein to 
NP ratio but inhibited at lower ratios.37 Hence, in order to fully harness the inhibition effects 
while reducing the aggregation-enhancement effects of NPs, it is crucial to elucidate the driving 
forces that dictate the drastically different effects of NPs on protein amyloid aggregation (see a 
summary list of such complex effects in Table 1). 

Depending on their core material and surface coating, NPs possess distinct 
physicochemical properties to dictate their modes of interaction with proteins. The protein 
aggregation behavior in the presence of NPs is likely determined by inter NP-protein attractions. 
Using dynamic Monte Carlo (MC) simulations of model peptides (as patchy spherocylinders) 
interacting with “smooth” surfaces (no atomic structure of the surface), the effects on peptide 
aggregation kinetics by varying surface attractions were investigated.48 A non-linear dependence 
of aggregation retardation and/or acceleration was found to depend on surface binding affinities 
and the relative bulk/surface aggregation rate. Because of the highly coarse-grained nature of the 
model system, detailed molecular insight is still lacking. By modeling the peptide as beads-on-a-
string in discrete molecular dynamics (DMD) simulations,41 the dependence of protein 
aggregation on protein-protein and protein-NP attraction strengths has been investigated. Therein 
the NP was modeled as a single bead with nonspecific attraction to the protein atoms. They 
observed that protein aggregation was enhanced by a stronger protein-NP attraction and the NP 
surface served as a fibrillation catalyst. However, the experimentally reported inhibition of 
protein amyloid aggregation was not observed. We postulate that modeling NP as a single bead 
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may have omitted some important properties of the NP that may contribute to peptide 
aggregation on the surface. For instance, the atomic arrangement on the NP surface may limit the 
lateral diffusion of peptides. In this study, we explicitly modeled the surface atoms of a 
simplified spherical NP and used Aβ peptide as the model protein. We modeled Aβ peptide by a 
simplified two-bead-per-residue model,49–51 and probed the effects of varying NP-protein 
attraction strength on Aβ aggregation. Using DMD simulations, we observed an optimal NP-
protein interaction strength with which Aβ peptides displayed the maximum aggregation on the 
NP surface. Under the optimal value, increase of NP-protein attraction promoted protein 
aggregation, while above the optimal value, in contrast, Aβ aggregation was inhibited on the NP 
surface. In addition, we also examined the concentration dependence of Aβ aggregation on the 
NP surface, which pointed to a dual effect of NP/protein ratio on protein aggregation. Because 
the coarse-grained simulations captured the general properties of NP-protein interaction systems, 
we expect that the obtained mechanistic insight is generally applicable to understand the 
seemingly conflicting effects of NPs on amyloid aggregation. 

 
Results and Discussion 
In the coarse-grained model for Aβ peptides, each amino acid was represented by the backbone 
Cα and side-chain Cβ beads49 (Methods). We used a structure-based interaction potential (i.e. the 
Gō model52,53) to model both intra- and inter-chain interactions of the peptides, where two 
residues in contact in the native state were assigned an attractive interaction and the same residue 
pair from different peptides featured the same interaction. Although the effective interaction 
potentials in the Gō model does not explicitly model physical interactions, e.g. solvation and 
electrostatics, the model has been found useful to capture important properties of protein 
aggregation,49–51 such as driving forces for aggregation, aggregation pathways, and structural 
characteristics of amyloid fibrils. We used the NMR structure of Aβ (PDB ID: 1BA4) in the 
water-micelle environment as the reference structure, where the protein was partially helical 
(Fig. S1A). For each inter-residue contact between the Cβ atoms, we assigned an attractive 
potential with the energy gain of ε. In addition, we also included hydrogen-bond interaction 
between the backbone Cα beads (Methods). The same two-bead per amino acid model with Gō 
potential has been used to study amyloid fibril formation54 of Aβ peptides, where the general 
properties of peptide aggregation were captured. For the NP, we modeled its surface atoms as 
approximately close-packing on the 2D spherical surface with a diameter of 100 Å (Methods). 
Although the NP model did not correspond to actual facetted atomic surfaces as observed by 
electron microscopy,55,56 together with the simplified protein model we expected the coarse-
grained simulations to capture the essential properties of NP surface upon protein binding 
without loss of generality. We assigned nonspecific attractive interaction between the NP and the 
protein atoms with the interaction strength of εNP. We kept NP atoms static and proteins free to 
move in the DMD simulations. 
 Before modeling Aβ aggregation influenced by the NP, we first characterized the folding 
dynamics of Aβ monomer in the absence of the NP (or in solution) using replica exchange 
simulations57 (Methods). We used the weighted histogram analysis method (WHAM58) to 
calculate heat capacity (Cv) and radius of gyration (Rg), as functions of temperature in the unit of 
ε/kB, where ε is the protein contact energy and kB is the Boltzmann constant (Fig. S1B,C). We 
observed two peaks in the Cv plot (Fig. S1B). The first peak at T ~ 0.57 ε/kB corresponds to 
melting of the N-terminal helix (e.g., inset in Fig. 1B). Due to the rigidity of a single helix at low 
temperatures, unfolding of the N-terminal helix led to decreases of the Rg (Fig. S1C). As 
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temperature increased further, the rest of the helix started to unfold into a random coil, which in 
turn resulted in increased Rg. Therefore, the second peak near ~ 0.65 ε/kB corresponds to the 
global unfolding temperature, Tm. The observed non-corporative folding thermodynamics of Aβ 
monomer is consistent with previous computational and experimental results.54,59 It is well-
known that protein needs to be partially unfolded in order to form β-sheet rich aggregates.60,61 To 
facilitate observation of protein aggregation in the DMD simulations, we performed our 
aggregation simulations at T ~ 0.655 ε/kB which was slightly above Tm. 

Amyloid aggregation of Aβ on NP surface with different interaction strengths. We 
performed aggregation simulations with ten Aβ peptides in the presence of the model NP by 
varying the interaction potential between the NP and the peptide atoms εNP from 0.1ε to 0.7ε, 
with an increment of 0.1ε. For each εNP, we performed 50 independent DMD simulations with 
different initial positions and velocities, where ten Aβ monomers were randomly positioned in 
the vicinity of the spherical NP. To quantify the aggregation process on the NP surface, we 
monitored the average number of residues per chain that formed inter-chain β-sheet like 
structures on the NP surface, Nβ-Res (Methods). Here, we only included those Aβ peptides that 
were bound to the NP surface. By averaging over 50 independent runs, we obtained the average 
Nβ-Res as a function of the simulation time (Fig. 1A). Usually, protein aggregation in solution is 
characterized by a lag time phase followed by a rapid elongation phase.62–64 Because of the 
intrinsically disordered nature of the coarse-grained model peptide encoded by the Gō potential, 
the high local concentration of proteins on the NP surface, and also the fact that we simulated at 
a denaturing temperature (i.e., the nucleation process corresponding to the α-to-β transition65 of 
individual peptides was negligible), we did not observe the apparent lag time phase in our 
simulations. The aggregation reached plateau after a rapid elongation phase.  

To quantify the aggregation process, we used the sigmoidal function (Methods), routinely 
used in experimental studies to characterize protein aggregation kinetics,66 to fit the 
computationally derived aggregation kinetics data (dashed lines in Fig. 1A). From the fitting 
analysis, we obtained the maximal Nβ-Res as a function of NP-protein interaction strength εNP (Fig 
1B). We found that the maximal Nβ-Res, which quantifies the amount of β-sheet aggregation per 
chain on the NP surface, had a maximum value near εNP = 0.3 ε. For interactions εNP < 0.3 ε, the 
increase of NP-protein attraction resulted in increased protein aggregation. We also observed that 
with these relatively weak NP-protein interactions the value of Nβ-Res displayed larger 
fluctuations compared to the simulations with stronger NP-protein attractions. By computing the 
number of proteins bound to the NP surface (Fig. S2), we found that large fluctuations resulted 
from small numbers of proteins on the NP surface, due to weak NP-protein interactions. 

When εNP is stronger than 0.3 ε, the increased interaction between the NP surface atoms 
and the proteins reduced aggregation (Fig. 1B). Examination of the simulation trajectories 
indicated that strong NP-protein attractions rendered all Aβ peptides bound to the NP surface 
(Fig. S2) but also reduced their mobility. We quantified the mobility of the proteins on the NP 
surface by computing the protein diffusion coefficient from DMD simulations, D (Fig. S3A). As 
εNP increased, the diffusion coefficient indeed decreased. Interestingly, we observed that the 
dependence of diffusion coefficient on the NP-peptide interaction strength εNP can be described 
as exponential, D ~ exp(-nεNP/kBT) (Fig. S3B). Such an exponential dependence is consistent 
with a hopping mechanism, where the peptide atoms diffuse on the NP surface by hopping 
between neighboring epitaxy sites, determined by the atomic NP surface (e.g. NP structures in 
Fig. 1C,D). With reduced diffusion, the proteins were unable to freely diffuse on the NP surface 
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and also unable to undergo conformation changes that are important for the formation of inter-
peptide β-sheet, thus reducing aggregation (Fig. 1B).  

  To understand why the peptide aggregation was maximal at εNP ~ 0.3ε, we performed 
replica exchange DMD simulations of an Aβ monomer on the NP surface with εNP = 0.3ε. Using 
WHAM, we estimated the specific heat as a function of temperature (Fig. S4A). Compared to Aβ 
monomer in solution, we noticed a shift of Tm (the highest peak) to a lower temperature. The 
destabilization of the protein on the NP surface was due to stabilization of the unfolded state, 
where the peptide made more contacts with the NP compared to the folded state. Interestingly, 
there was a shoulder in the specific heat near temperature ~0.75 ε/kB. By calculating the 
probability of the protein in contact with the NP (Fig. S4B), we found that this shoulder of Cv at 
high temperature corresponded to the dissociation of Aβ from the NP surface, Td. At the 
intermediate NP-protein interaction strength εNP = 0.3ε, the protein was more destabilized on the 
NP surface compared to that in solution, but still was able to freely diffuse on the NP surface 
(Fig. S3), thereby promoting the formation of Aβ aggregates (e.g., the snapshot of Aβ aggregates 
as in Fig. 1C). As the NP-protein attraction increased further, increased destabilization of the 
protein toward the unfolded states is expected by maximizing contacts between the peptides and 
the NP. However, such a strong NP-protein attraction also destabilized the amyloid fibril since 
the peptides tended to interact with the NP rather than among themselves (e.g., snapshot 
structures from simulations with εNP = 0.7ε in Fig. 2D). Hence, in addition to reduced lateral 
diffusion, strong NP-protein attraction also enthalpically inhibited the formation of amyloid 
aggregation.  

 Taken together, due to the competitions between aggregation-promoting (e.g., increased 
protein local concentration and destabilization of protein native states) and aggregation-
inhibiting factors (e.g., deceased diffusion and destabilization of amyloid fibrils), we observed 
the crossover with the inter-atomic interaction energy between the NPs and the proteins, εNP ~ 
0.3ε. Various proteins have distinct stabilities that not only depend on their primary, secondary 
and tertiary structures but also solution conditions, such as temperature, pH value and salt 
concentration. The destabilization of protein native states and also amyloid fibrils upon NP 
binding depends on NP size, shape, and surface curvature. The lateral diffusion of proteins on a 
NP surface also depends on the physiochemical properties of the surface, such as NP chemical 
composition, surface atomic arrangement, and functionalization. As a result, we expect that the 
exact crossover value of inter NP-protein attractions (i.e., binding affinities) may depend on the 
properties of the protein, the NP, and the solvent of interest. 

The dependence of protein aggregation on NP-protein interaction obtained from our 
coarse-grained simulations with simplified NP and protein models can help explain the 
contrasting effects of NP-protein attraction on amyloid aggregation reported in the literature 
(Table 1). For example, Wu et al. found that TiO2 had a higher affinity to bind Aβ than other 
metal-oxides such as SiO2, ZrO2, and CeO2;

43 and the authors observed that TiO2 NPs displayed 
a stronger promoting effect on Aβ aggregation than the other types of metal-oxide NPs. We 
believe that these metal-oxide NPs elicit relatively weak NP-protein interactions due to their 
polar surfaces. Therefore, stronger binding of metal-oxide NPs with Aβ peptides can give rise to 
increased aggregation. On the other hand, NPs such as graphene, graphene oxide nanosheets, 
carbon nanotubes and NiPAM:BAM co-polymeric NPs feature strong binding to Aβ peptides 
and thus strongly hindered amyloid aggregation of Aβ.42,67,68 For example, in a recent study 
combining all-atom molecular dynamics and docking simulations with experimental 
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characterizations,69 the amyloid fibril formation of Aβ was found to be disrupted by a strong 
binding between peptides and graphene/graphene oxide nanosheets enhanced by π–π stacking 
between aromatic residues and the carbon-based NP surface. It has also been demonstrated that 
graphene oxide NPs strongly inhibited the formation of Aβ amyloid fibrils,67 where the 
retardation/inhibition of amyloid fibril formation was revealed by both ThT fluorescence and 
AFM imaging. By adjusting the composition of NiPAM/BAM co-polymer NPs, Cabaleiro-Lago 
et al. showed that more hydrophobic 85:15 NiPAM/BAM NPs had a stronger binding to Aβ 
peptides than the less hydrophobic 50:50 NiPAM/BAM NPs, thereby exerting a greater effect on 
hindering Aβ aggregation than the latter.  

The concentration-dependence of Aβ aggregation on NP surface. With relatively weak NP-
protein interactions, our simulations suggested that elevated aggregation with increasing εNP was 
due to increased protein concentration on the NP surface (Fig. S2). Next, we evaluated the 
concentration-dependence of Aβ aggregation on the NP surface with the same interaction 
strength, εNP = 0.3ε. We performed aggregation simulations of various numbers of proteins, from 
2 to 10 monomers on the NP surface. At each concentration, we performed 50 independent DMD 
simulations and computed the average Nβ-Res as a function of time (Fig. 2A). As the protein 
concentration increased, we found that the formation of aggregation became faster. For instance, 
for low peptide concentrations, e.g. the two and four Aβ simulations, the aggregation was not 
fully saturated during the course of simulations. Fitted with the sigmoidal function, we obtained 
the elongation rates, Ke, as a function of peptide numbers (Fig. 2B). Our results suggested that 
overall the elongation rate Ke increased with increased protein concentration. Interestingly, there 
was a transition of Ke between four and six monomers on the NP surface, after which the 
concentration dependence of the elongation rate became significantly weaker. This observed 
transition between slow and fast elongation rate is possibly due to the formation of aggregation 
nucleus, i.e., oligomers corresponding to the free energy barrier along the aggregation pathway 
from monomers toward final fibrils. Our simulation results support an aggregation nucleus with 
the size of approximately four to six Aβ monomers, which is consistent with previous 
experimental observations of Aβ aggregation64,70.  

Competition of Aβ aggregation on NP surface and in solution. Interactions between NPs and 
peptides may affect the partition of protein concentrations in solution and on the NP surface, and 
subsequently impact aggregation of proteins on the NP surface and in solution. We performed 
aggregation simulations with 6 Aβ monomers in the presence of the NP, where the attractive 
interactions between the NP and the peptide atoms can be switched on or turned off. A total of 
50 independent simulations were carried out starting with each monomer randomly positioned 
away from the NP surface. We first simulated the system without attractive interaction between 
the NP and the peptide atoms (only hard-core interaction), and then compared the results with 
simulation of a weak NP-protein attraction, εNP = 0.225ε. In each simulation, we monitored the 
Nβ-Res for proteins that were not in contact with the NP, i.e., the aggregation of protein in solution. 
In the case where the NP atoms had only hard-core interactions with the peptides, we used the 
same interaction range of 7.5 Å to define the NP-protein contacts. In the aggregation simulations 
with and without NP-protein attraction, we observed that the formation of inter-peptide hydrogen 
bonds was highly stochastic (Fig. S5). Although each trajectory followed a sigmoidal-like 
kinetics of inter-peptide hydrogen bond formation, their lag times varied drastically. For each set 
of simulations with and without NP-protein attraction, we fitted each of the fifty simulations with 
the sigmoidal function and computed the corresponding histogram of lag time (Fig. 3A). A 

Page 6 of 18RSC Advances

R
SC

A
dv
an
ce
s
A
cc
ep
te
d
M
an
us
cr
ip
t

Pu
bl

ish
ed

 o
n 

01
 D

ec
em

be
r 2

01
5.

 D
ow

nl
oa

de
d 

by
 C

le
m

so
n 

U
ni

ve
rs

ity
 o

n 
01

/1
2/

20
15

 1
4:

32
:0

3.
 

View Article Online
DOI: 10.1039/C5RA20182A

http://dx.doi.org/10.1039/c5ra20182a


 7

Kolmogorov-Smirnov test of these two histograms gave a P-value of 0.067 for a null hypothesis 
of the same underlying distribution, suggesting that the two distributions are different from each 
other with a confidence level of ~93%. We observed that without NP-protein attraction the 
distribution of the aggregation lag times in solution was narrower and the corresponding average 
value was shorter compared to the simulations with a weak attraction.  

Since protein aggregation is concentration dependent, we computed the number of 
proteins in contact with NPs as a function of time by averaging over independent simulations 
(Fig. 3B). Indeed, the NP-protein attraction increased the local concentration of proteins on the 
NP surface. As a result, the protein concentration in solution was reduced, which in turn delayed 
the nucleation of amyloid fibrils in solution. We also computed the formation of Nβ-Res for 
proteins on the NP surface as a function of time (Fig. 3C). Upon binding the NP surface due to 
NP-protein attraction (Fig. 3B), significant protein aggregation was observed in the vicinity of 
the NP surface compared to simulations without NP-protein attraction. As observed in the 
previous simulation (Fig. 2A), we did not observe a major lag time of protein aggregation on NP 
surface at the relatively weak NP-protein attraction strength (Fig. 1). The aggregation of proteins 
on the NP surface was determined by the amount of proteins diffused to the NP surface.  

Complex behavior of protein aggregation in the presence of NPs. Because of the partitioning 
of proteins in solution and on NP surface induced by NP-protein attraction and also because of 
the concentration dependence of protein aggregation, our study reveals a mechanistic insight 
about the complex effects of NPs on protein aggregation. The attraction between NP and protein 
atoms increased the local concentration of proteins on the NP surface while reducing the protein 
concentration in solution. When the attraction between the NP and the protein atoms were strong 
(i.e., right side of the peak in Fig. 1B), amyloid aggregation of the absorbed proteins was 
inhibited. Together with the reduced amyloid aggregation in solution due to depleted proteins, 
such NPs always displayed an inhibitive effect on protein aggregation independent of the relative 
NP/protein ratio. When the attraction was relatively weak, proteins on the NP surface formed 
amyloid aggregations in a concentration-dependent manner (Fig. 2). At a high protein/NP ratio 
with a small amount of NPs introduced to the protein solution, the accumulation of proteins 
absorbed onto the NP surface could promote protein aggregation (Fig. 4A). With increased NP 
concentration, the relative protein/NP ratio decreased. As a result, both concentrations of the 
proteins in solution and on the NP surface decreased compared to the high protein/NP ratio case, 
which in turn reduced protein aggregations both in solution and on the NP surface (Fig. 4B). 
Thus, our computational study suggests that NPs with relatively weak attraction to proteins can 
either promote or hinder protein aggregation depending on the relative concentrations between 
the protein and the NPs as observed previously in experiments37 and in dynamic MC simulations 
of patchy spherocylinders as model peptides.48 Our results are in agreement with a recent 
experimental work,71 where the aggregation of α-synuclein in the presence of small unilamellar 
vesicles (SUV) was studied at different salt concentrations and also different SUV-to-protein 
concentration ratios. With increased salt concentrations, the dissociation constant of proteins 
from the SUV surface increased from 0.35 to 11 µM, indicated a decreased binding between 
SUVs and α-synuclein. Such a decreased protein-SUV binding led to decreased rate of amyloid 
fibril formation. More importantly, an enhancement in aggregation was observed when the 
relative SUV-to-protein concentration ratio was low in the range from 2 to 15, but under higher 
SUV-to-protein concentration ratios (from 15 to 40) the rate of fibril formation decreased. 

Given the differences between our DMD simulations and previous MC studies48 in terms 
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of peptide and NP surface models as well as NP-peptide attraction scales, it is not 
straightforward to directly compare the results from the two computational studies. Based on the 
relative aggregation kinetics on NP surface (Fig. 1,2) and in solution (Fig. 3), we note that our 
results of εNP at 0.1~0.3ε might correspond to the previous MC simulations with attractions or 
high attractions between model peptides and surface, where the aggregation is 
promoted/accelerated at the NP surface compared to aggregation in solution or bulk. The higher 
resolution of both peptide and NP surface models in the current study allows us to observe the 
aggregation-inhibition due to strong peptide and protein absorption onto the NP surface (e.g. 
graphene and graphene oxide),42,67 the phenomena of which have not been captured by other 
computational models. 
 
Conclusion 
We have applied coarse-grained DMD simulations to systematically study the effects of 
nonspecific NP-peptide attractions on peptide aggregation. Although the simplified NP/protein 
model may lack the chemical details of specific NPs and peptides, it captures the general 
properties of NP-protein systems. In addition, the structure-based Gō interaction potentials has 
been utilized to model the generic properties of peptide aggregation in the presence of NPs 
instead of predicting specific aggregation pathways of Aβ. The corresponding coarse-grained 
simulations recapitulate the experimentally-observed aggregation promotion and/or inhibition by 
various NPs and provide the corresponding molecular insights. Our computational studies 
demonstrated that NP-protein interactions contribute to multiple factors important for amyloid 
aggregation of proteins on the NP surface. These factors include protein concentration, stability 
of protein folded structures, stability of amyloid fibrils, and protein mobility on the NP surface. 
Increases in NP-protein attraction led to increased surface protein concentration, destabilization 
of protein folded states, destabilization of amyloid fibrils, and reduction of protein lateral 
diffusion. While increase of protein concentration and destabilization of protein folded states 
promoted amyloid aggregation, destabilization of amyloid fibrils and reduction of lateral 
diffusion inhibited protein aggregation. Consequential to the interplay between these competing 
factors, we observed an initial aggregation promotion followed by aggregation inhibition 
depending on the interaction strength between the NP and the protein atoms. Additionally, our 
study indicated that the relative concentrations between proteins and NPs also serve an important 
role on amyloid aggregation. Under a high NP/protein ratio, NPs that intrinsically promote 
protein aggregation may display an inhibitive effect by depleting the proteins in solution but 
effectively having a low protein concentration on the NP surface. Therefore, in order to 
characterize the intrinsic effects of NPs on amyloid aggregation, it is necessary to study a wide 
range of NP-protein ratios. 

  

Methods 
Discrete molecular dynamics (DMD). More detailed description of DMD algorithm can be 
found in literature72,73. Shortly, inter-atomistic interactions were modeled by square step 
potential. Bonds, bond angles and dihedrals were modeled by infinitely deep square-well 
potential. During a simulation, an atom would have constant velocity until it reached boundaries 
of the potential, at which instant it changed velocity according to energy, momentum and angular 
momentum conservation laws. For each step in the simulations, possible encounters of atoms and 
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potential wells were sorted so subsequent collision could be predicted. Compared to traditional 
molecular dynamics simulation (MD) continuous potential functions, DMD potentials are 
discretized by step functions, reducing DMD simulations to event-driven molecular dynamics 
simulations. Better sampling efficiency of DMD over MD originates mainly from the rapid 
processing of collision events and localized updates of collisions (only collided atoms are 
required to update at each collision).74 

Two-bead model of the peptide. We modeled Aβ peptide using the two-bead per residue 
model.49,60 Each amino acid was modeled using one bead for Cα (backbone carbon) and another 
for Cβ (side chain). Intra-molecular bonds along the peptide were assigned to reflect protein 
geometry. Side chain-side chain interactions were modeled using the structure-based potential, 
which favored observation of native state interactions. The interaction strength between native 
contacts was set to ε, while the attractions between Cβ atoms were assigned with the hard-core 
distance of Dhc = 3 Å and the interaction range DIR = 7.5 Å. Also, hydrogen bonds were included 
in this model between the backbone atoms60. Each Cα could form maximum two hydrogen bonds 
with another Cα atom, and two bonds formed by one Cα were co-linear in order to model the 
angular dependence of hydrogen bonds. Other inter-atomic interactions were modeled by simple 
hard-core collision with the hard-core distance of 3 Å. 

In our coarse-grained DMD simulations, the unit of length was angstrom (10-10 meter). 
Assuming the energy unit ε ~ 1 kcal/mol (i.e., the energy gain for each Gō contact) and mass unit 
~ 50 Delton (the average mass of the coarse-grained Cα and Cβ  beads), the time unit (t.u.) was 
determined as approximately 353 femtoseconds. 

NP model. The NP was modeled as two layers close-packed all-atom sphere of D=100 Å in 
diameter. The VDW radius of the atom was considered to be r=1.8 Å. To determine this number 
we used formula N = (D2 + (D − 2r 3/2)2)ρ2d /r2, where ρ2d denotes the density of two-
dimensional packing, 0.9069. The number of atoms calculated needed to form 2-layered closed 
packing was N~5217. Initially, the atoms were uniformly distributed around the center in the θ 
and φ coordinates, while distribution along the radial direction was Gaussian with the center of 
50 Å and standard deviation of 7 Å. All atoms were assigned hard-core collision interaction with 
each other with Dhc = 3.6 Å, and were confined to the surface of the NP with a potential step 
between 46.88 Å and 50 Å to the core bead, which was kept static in DMD simulations. Then, 
relaxation simulations were performed at T = 0.6 ε/kB for 2 million time units, 0.7 ε/kB for next 1 
million time units, and at T = 0.85 ε/kB for the last 1 million time units. Finally, all atoms were 
approximately packed closely into two layers (Fig. S6). We assigned attractive interactions 
between any NP atoms and peptide atoms with the interaction range DIR = 7.5 Å, and the hard-
core distance of Dhc = 3.6 Å.  

Simulations of Aβ monomer. We used a 200×200×200 Å3 simulation box with periodic 
boundary conditions. The molecular system was initially equilibrated at T = 0.45 ε/kB for 105 
time units. Eight replica with temperatures T= 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, and 
0.85 ε/kB for 3x106 time units.  

Simulations of Aβ aggregation on NP surface. We used a simulation box of 205×205×205 Å3 
with periodic boundary conditions. The NP was placed at the center. Aβ peptides were randomly 
placed in proximity of the NP surface. Prior to production simulations, we equilibrated the 
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system at T = 0.65 ε/kB for 105 time units. For each of interaction strengths -0.1ε, -0.2ε, -0.3ε, -
0.4ε, -0.5ε, -0.6ε and -0.7ε, we performed 50 independent simulations with different initial 
conditions for the duration of 1×106 time units. 

Calculation of residues forming β-sheets. In order to measure the extent of amyloid 
aggregation, we counted the number of residues that were aligned to satisfy a β-sheet-like (either 
parallel or anti-parallel) geometry. We considered two residues (i, j) for different chains in β-
contact if the distance between their corresponding Cβ atoms was less than 7.5 Å, and their 
corresponding nearest neighbors (i+1, j+1) and (i-1, j-1) were in contact for parallel-like β-sheet, 
or (i+1, j-1) and (i-1, j+1) were in contact for anti-parallel-like β-sheet.  

A protein was counted as on the NP surface if any of the protein atoms made contact with 
the NP surface atoms with a cutoff distance of 7.5 Å. We used the empirical sigmoidal function 
to fit the aggregation kinetics data: y=(A-B)/(1+exp(-k(t-t0)))+B, using OriginLab 9.1 
(www.originlab.com). Here, fitting parameter A corresponded to the maximum aggregate. The lag 
time tlag was defined as tlag = t0 - 2/k. In cases where there was no obvious lag time for 
aggregation on the NP surface, we set t0 as zero in the fitter (e.g. Figs. 1,2). 
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Tables 

Table 1. A list of experimental studies illustrating the complex effects of NPs on protein amyloid 
aggregation, including promotion, inhibition, and also duel effects. 

Nanoparticles Proteins Effects on Amyloid Aggregation 
Multi-walled CNT, 
QDs, Copolymer NP, 
CeO2 NP23 

β-2 microglobulin 
Promotion 

TiO2 NP43 Aβ 
AuNP75 lysozyme 
Graphene oxide67 Aβ 

Inhibition 
AuNP45 Aβ 
CNT42 Aβ16-22 
Carbon Dots76 Insulin 
Polymeric NP68 Aβ 
Polystyrene NP37 Aβ Either promotion or inhibition 
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Figures 

 

Figure 1. The dependence of Aβ aggregation on NP-protein interaction strength. (A) For 
simulations of each assigned NP-peptide interaction strength εNP, the average number of residues 
per chain that formed inter-peptide beta-sheets, Nβ-Res, was computed as a function of simulation 
time. All 50 independent simulations were used for the averaging. The fitted sigmoidal curves 
were shown as dashed lines. (B) The maximum Nβ-Res as a function of NP-peptide interaction 
strength εNP was estimated from sigmoidal fitting (Fig. S1). Representative snapshot structures 
from simulations of εNP= 0.3ε (C) and εNP=0.7ε (D). The surface atoms of the NP are shown as 
spheres and proteins in cartoon representation. Different peptides are colored differently.  
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Figure 2. The dependence of Aβ aggregation on peptide concentration on NP surface. (A) 
The average β-sheet content per chain, Nβ-Res, as a function of simulation time for simulations 
with different numbers of peptides adsorbed on the NP surface. The dashed lines correspond to 
the sigmoidal fitting. (B) The elongation rates derived from curve fitting of (A).  
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Figure 3. Competition of Aβ aggregation on NP surface and in solution. (A) Histograms of 
Aβ aggregation lag times in solution, where the interactions between NP and peptide atoms were 
switched off and turned on. (B) Average number of chains in the vicinity of the NP surface over 
time. (C) Aggregation trajectories of amyloid beta in the vicinity of the NP surface. The error 
bars correspond to standard deviations computed from independent aggregation simulations.  
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Figure 4. The effect of relative NP/peptide concentration on peptide aggregation. (A) With a 
high peptide to NP (depicted as gray solid spheres) ratio, the peptides in solution (denoted as 
curly lines in gray) are adsorbed onto the NP surface (denoted as lines in cyan). With a high local 
concentration of peptides on the NP surface that intrinsically promotes aggregation (relative 
weak NP-peptide attraction as in Fig. 2B), the peptides can self-associate and form amyloid 
fibrils (red arrows). (B) With reduced peptide to NP ratio due to increased NP concentration, the 
peptides in solution (ρsol) are depleted by binding NPs. Concomitantly, the concentration of 
proteins on NP surface (nnp) is also reduced compared to the case in panel (A). The decrease of 
peptide concentrations in solution and also on the NP surface leads to reduced amyloid 
aggregation.  
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Supplementary Figures  

 

Figure S1. Folding thermodynamics of Aβ monomer derived from DMD simulations.  (A) 
The native state of Aβ (PDB: 1BA4) is shown in cartoon representation. The backbone trace 
form N- to C-terminal is colored in rainbow for blue to red, respectively. (B) Specific heat (Cv) 
and (C) Radius of gyration (Rg) and corresponding g statistical uncertainties (as error bars) were 
computed from replica exchange DMD simulations using the WHAM analysis. Typical 
structures of Aβ in the simulations, corresponding to native-like, intermediate, and unfold states, 
are shown in the inset of panel B. 
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Figure S2. For different values of NP-protein interaction strength, the average number of Aβ 
peptides on the NP surface was computed as a function of simulation time. The average was 
taken from 50 independent simulations, each of which was performed for a total 1×106 time units 
(t.u.).  
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Figure S3. Peptide diffusion on the NP surface. (A) Mean square deviation (MSD) of the 
peptides was computed as a function of its diffusion time on the NP surface. The analysis was 
done for simulations with a single peptide bound to the NP surface. We only performed 
simulations with εNP ≥ 0.3 ε such that the peptide stayed as bound (e.g. Fig. S1). Linear-fit results 
in the diffusion coefficients, D. (B) The diffusion coefficients follow a linear dependence on NP-
protein interaction potential εNP in the log-linear plot, suggesting an exponential-like dependence 
D ~ exp(-cεNP). 
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Figure S4. (A) Heat capacity of Aβ monomer in the presence of the NP (solid line), compared to 
the corresponding heat capacity in the absence of the NP (dashed line). (B) The binding 
probability of the peptide to the NP surface. 
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Figure S5. Typical trajectories (4 out of 50 independent simulations) of Nβ-res for proteins in 
solution (not NP-bound) as a function of simulation time, in the absence (A) and presence (B) of 
NP-protein attraction. For each trajectory, the sigmoidal fit was shown as a red dashed line. 
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Figure S6. The cross-section of the NP model indicates the two layers of closely packed surface 
atoms. 

  

 


