

πDMD User’s Guide

Version 1.0

Program Authors: Feng Ding, David G. Shirvanyants, Shuangye Yin, Nikolay V. Dokholyan

Documentation: Elizabeth A. Proctor

November 15, 2011

Molecules in Action, LLC

1530 Mill Valley Road

Chapel Hill, NC 27516

The πDMD User’s Guide describes the performance of molecular simulations using the parallel

simulation engine πDMD. The guide includes details of the algorithm, force field, and molecular

models, as well as descriptions of input and output files and the options of the πDMD suite.

 2

Copyright

Molecules in Action, LLC (2011)

Non-commercial Use

Software Registration

License Agreement

 3

Contact Information

For licensing issues, email:

 license@moleculesinaction.com

Molecules in Action, LLC

1530 Mill Valley Road

Chapel Hill, NC 27516

For software support, email:

 support@moleculesinaction.com

 4

Table of Contents

Copyright ... 2

Non-commercial Use .. 2

Software Registration .. 2

License Agreement ... 2

Contact Information ... 3

1 Introduction ... 6

1.1 Discrete Molecular Dynamics Simulations ... 6

1.2 πDMD – Parallel Discrete Molecular Dynamics .. 6

1.3 Examples of Molecular Models ... 8

1.3.1 1-bead Protein Model ... 8

1.3.2 2-bead Protein Model ... 8

1.3.3 4-bead Protein Model ... 9

1.3.4 Quasi-all-atom Protein Model .. 10

1.3.5 All-atom Protein and RNA Models ... 10

1.3.6 Coarse-grained RNA and DNA Models .. 12

1.3.7 Coarse-grained Lipid Model .. 13

1.3.8 Non-biological systems ... 14

1.4 Medusa Force Field .. 14

1.5 Hydrogen Bonding Reaction Algorithm .. 15

2 πDMD with Replica Exchange .. 16

3 Input Files ... 17

3.1 File Formats .. 17

3.1.1 Parameter File .. 17

3.1.2 State File .. 21

3.1.3 Constraint File ... 21

3.1.4 Start File ... 21

3.1.5 Replica Exchange Input File ... 22

3.2 Simulations With Constraints .. 23

3.2.1 Creating Input Constraints .. 23

 5

3.2.2 Incorporating Additional Potentials ... 24

3.3 Generating πDMD Input Files ... 24

3.3.1 Parameter, State, and Constraint Files .. 25

3.3.2 Start File ... 27

3.4 Creating Input Files for Coarse-grained Models ... 27

3.4.1 1-bead Protein Model ... 29

3.4.2 2-bead Protein Model ... 30

3.4.3 4-bead Protein Model ... 31

3.4.4 Quasi-all-atom Protein Model .. 33

3.4.5 Coarse-grained RNA and DNA Models .. 34

3.4.6 Coarse-grained Lipid Model .. 34

4 Output Files .. 35

4.1 Movie (Trajectory) File .. 35

4.2 Echo File .. 35

4.3 Restart File ... 36

4.4 Replica Exchange Output File .. 36

5 Program Options and Simulation Parameters .. 36

5.1 Single Trajectory Simulations ... 37

5.2 Replica Exchange Simulations .. 41

6 Running πDMD .. 42

6.1 System Architecture ... 43

6.2 Memory Usage and Scaling .. 43

7 Analysis of πDMD Simulations ... 44

8 πDMD Installation ... 46

8.1 Compatible Platforms .. 46

8.2 Compilation .. 46

8.3 Additional Documentation ... 46

References .. 47

 6

1 Introduction

πDMD is a parallelized molecular dynamics simulation engine optimized for the simulation of

macromolecular complexes at biologically relevant time and length scales. This User’s Guide

will give some background on the technique and describe how to use the πDMD suite.

1.1 Discrete Molecular Dynamics Simulations

The simulation method Discrete Molecular Dynamics (DMD) computes particle trajectories by

applying the principles of physics. In place of the continuous potentials used in traditional

molecular dynamics (MD) simulations, DMD employs discrete step function potentials. Bonded

interactions (bonds, bond angles, and dihedrals) are modeled as infinite square wells, and non-

bonded interactions are represented as a series of discrete energetic steps, decreasing in

magnitude with increasing distance until reaching zero at some cutoff distance.

As a result, the simulation engine solves the ballistic equations of motion for only those particles

participating in a collision, instead of integrating over Newton’s equations of motion for every

particle in the system. Each particle in the simulation has a constant velocity until reaching the

interaction distance of another particle (termed a “collision”), upon which it instantaneously

changes velocity based on the laws of conservation of energy, momentum, and angular

momentum. Each time step represents a single collision of particles, and the time between time

steps is therefore variable; valuable calculation time is not spent on system snapshots where no

events are occuring. To this end, following each time step DMD utilizes a rapid sorting algorithm

to identify the next collision in the system. Because fewer calculations are performed, the DMD

method allows for longer time and length scales to become accessible in the simulation of large

biomolecules. A full discussion of the DMD algorithm can be found in (1-3).

1.2 πDMD – Parallel Discrete Molecular Dynamics

The parallel implementation of DMD is considered to be intrinsically difficult. The reason for this

difficulty is that DMD simulations are event-driven; every subsequent event is computed from

the current atom positions and velocities, which themselves result from a preceding chain of

events. DMD events include atom collisions and non-collision events needed to model

 7

thermostat, hydrogen bonding, and to keep track of nearest neighbors. Any two events in DMD

are potentially coupled; that is, the outcome of a preceding atomic collision may affect the time

and place of the subsequent events. Thus, predicting many collisions in parallel is problematic,

since after the first collision other predictions may become invalid. However, the coupling of

collisions is limited in time and space. When a collision occurs between atoms i and j, the effect

propagates through the system with a finite average speed. Therefore, many of the earlier

collision predictions will remain valid if the atoms participating in those predictions are located

sufficiently far from both i and j that the effect of the i-j collision does not have time to propagate

to their location before their collision.

The event-based parallelization approach utilized in πDMD splits the DMD simulation cycle into

several stages (4). First, every collision event in the system is predicted based on the current

atom positions and velocities. Using the predicted collision time, πDMD computes new atom

coordinates and velocities. However, unlike the serial DMD algorithm, in πDMD the states of the

atoms are not immediately updated. Instead, the results of the collision outcome are stored at a

temporary memory location. Every event is then tested for supersession by an earlier collision;

such events are cancelled and their temporarily stored outcomes are discarded. Finally, events

that have not been cancelled are “committed,” and the results previously stored in temporary

memory are copied to the primary storage of atom properties. Collision prediction, evaluation,

and exclusion can be performed simultaneously for most events, while the commitment stage is

executed only serially. In a typical DMD simulation, event prediction is the most computationally

intensive component, thus its parallelization produces the largest performance gain.

Thread synchronization is the most important step in πDMD simulations, distinguishing πDMD

from the serial DMD algorithm. Two or more threads must never simultaneously modify the

same shared data; the result of such unsynchronized data access is unpredictable.

Synchronization is usually performed by the introduction of a “lock mechanism,” which allows

one thread to access the data while all other threads wait. Coupled events must also be

detected, in order to ensure that they are processed in a serial manner. Thread locking and

coupled events lead to wasted CPU cycles, with adverse effects for parallelization efficiency.

The performance of thread synchronization strongly affects the overall πDMD performance, as

every collision evaluation requires at least one synchronization point employing a lock

mechanism, which may cause threads to waste time waiting for one another. In order to

minimize the locking overhead, the πDMD algorithm uses only non-blocking locks.

 8

1.3 Examples of Molecular Models

πDMD has the ability to utilize multi-scale modeling techniques in order to accommodate

varying molecular systems. Depending on the complexity, flexibility, and desired resolution

scale of the system of interest, molecules may be represented atom-by-atom or at a coarse-

grained level. In biological systems, simplified models are often desirable in that they speed up

the simulation process and allow for access to greater time- and length-scales. However, when

a greater level of detail is needed, an all-atom model is the best choice.

1.3.1 1-bead Protein Model

In the one-bead protein model, each residue is represented as a single sphere, forming

a ‘beads-on-a-string’ polymer model of the protein. The πDMD potentials utilize the

structure-based Gō model; residues in contact in the native structure attract each other,

and those that are not in contact repulse each other. A matrix of contacts is assigned so

that, for residues i and j, if the distance between the residues in the native structure rij is

such that the attractive spheres of the residues overlap, the element matrix εij has a

value of 1. If rij is greater than this maximum interaction distance, then εij is assigned as

−1. The contact matrix is then used to calculate pairwise interaction potentials, and the

potential energy of the structure is a sum of these pairwise interactions, E = 1
2

Uiji, j=1

N
! .

The one-bead protein model is useful for long time- and length-scale protein folding

studies, such as the study of protein aggregation. This model has been shown to

admirably capture the thermodynamic and kinetic properties of folding dynamics (2).

1.3.2 2-bead Protein Model

In the two-bead protein model, each residue is represented by one sphere for the Cα

atom and one sphere for the Cβ atom, with the exception of glycine, which has only the

 9

Cα atom. The introduction of an additional bead per residue limits the backbone flexibility

of the protein and allows for the modeling of high folding cooperativity (5).

The two-bead protein model is useful for the characterization of protein transition states.

The transition-state ensemble is the focus of many protein design efforts because of the

ability of a protein in this collection of conformational states to change rapidly from folded

to unfolded forms.

1.3.3 4-bead Protein Model

In the four-bead protein model, each residue is represented by three backbone spheres

(C, Cα, and N) and one sphere for the Cβ atom, with the exception of glycine, which has

no Cβ atom. The additional backbone atoms allow for the modeling of Ni–Cj hydrogen

bonds. The intermediate resolution of the four-bead protein model introduces additional

calculation over the two-bead model, due to the additional beads used in the model and

the necessary hydrogen-bonding interactions in the backbone. One method to

compensate for these extra calculations is to introduce experimentally-determined

constraints to the protein system in order to decrease the accessible conformational

space (6). A set of inter-residue proximity constraints reduces the number of degrees of

freedom of the system, and therefore the number of possible collisions and amount of

necessary calculations.

The four-bead protein model is useful in the study of secondary structure transitions (7).

Representation of all backbone atoms results in the ability to distinguish secondary

structure formation and transitions in secondary structure, due to the accurate modeling

of backbone–backbone hydrogen bonds.

 10

1.3.4 Quasi-all-atom Protein Model

In the quasi-all-atom protein model, each residue is represented as in the four-bead

model, with the addition of a Cγ atom to all residues except glycine and alanine. The

beta-branched residues, threonine, isoleucine, and valine, have a second Cγ atom to

represent the second brach after the Cβ atom. The bulky residues, arginine, lysine, and

tryptophan, are assigned an additional Cδ atom to simulate their additional volume.

The quasi-all-atom model is useful for modeling protein core packing and side-chain

degrees of freedom (8). The quasi-all-atom regime improves on the four-bead model in

that it can account for side-chain entropy and the effect of side-chain size on core

packing.

1.3.5 All-atom Protein and RNA Models

In the all-atom model, all heavy atoms and polar hydrogen atoms are explicitly

represented.

 11

Bonded interactions are modeled using infinite square well potentials. For covalently

bonded atoms i and j, the potential Uij is equal to +∞ for rij outside the range of the bond

length ± the bond variance. This effectively renders covalent bonds as unbreakable, and

two covalently bound atoms will be permanently constrained by this interaction for the

duration of the simulation. Angular constraints on next-nearest-neighbor atoms i and j,

with j = i + 2, are similarly represented by an infinite square well potential, which is

dependent on that of the covalent bond constraints for consecutive atoms.

Dihedral interactions between atoms i and j, with j = i + 3, are modeled by a multistep

potential function of pairwise distance rij. The set of distance parameters (dmin, d0, d1, d2,

and dmax) for these potentials is experimentally determined from distance distributions in

a non-redundant database of high-resolution protein structures.

The all-atom protein model of DMD is useful for the study of conformational dynamics on

the atomic level (3). Studies such as protein design, drug screening, and protein-protein

and protein-RNA interactions benefit from the high resolution of the all-atom model.

 12

1.3.6 Coarse-grained RNA and DNA Models

Because of the increased degrees of freedom in ribonucleic acid (RNA) as compared

with proteins, RNA has a much greater flexibility. The conformational space of RNA

increases exponentially with length, making a coarse-grained model of RNA invaluable

to conformational sampling. RNA is modeled as three ‘beads-on-a-string,’ with beads

representing the sugar and phosphate groups positioned at the respective centers of

mass of each group, and the nucleo-base bead positioned at the geometric center of the

hexagonal base ring.

In a similar way to RNA, deoxyribonucleic acid (DNA) in complex with histone can be

represented using a ‘beads-on-a-string’ coarse-grained model for DNA. The beads are

the same as those used in the RNA model described above: one bead for sugar, located

at the centroid of the deoxyribose ring; one bead for phosphate, located at the centroid

of that group’s constituent atoms; and one bead for the base, located at the centroid of

the hexagonal ring.

For both nucleic acids, neighboring beads are constrained by bond length, bond angle,

and dihedrals. The parameters for these bonded interactions are calculated from high-

resolution known RNA or DNA structures. Non-bonded interactions important for the

determination of secondary and tertiary structure include base pairing, base stacking,

phosphate–phosphate repulsion, and hydrophobic interactions. Parameters for these

interactions are experimentally determined. Bonded interactions, consisting of covalent

bonds, bond angles, and dihedrals, are modeled as infinite square-well potentials, as in

the protein models. Base-stacking constraints are also modeled by an infinitely high

potential well, while sugar-base steric constraints are defined by hard-sphere repulsion.

 13

Base-pairing interactions are modeled as two-step potential functions (left). Interactions

between DNA and histones consist of hydrogen bonding between the basic residues

lysine and arginine of the histone and the acidic phosphates in DNA, modeled as three-

step potential functions (right). Because of the negative charge of the DNA molecule,

interactions between DNA and the acidic or nonpolar residues of histone are negligible,

and are not included in the model.

In combination with the coarse-grained nature of the RNA and DNA models, the rapid

conformational sampling provided by the πDMD algorithm allows for the efficient

exploration of conformational space, despite the flexibility of these molecules (9,10). The

number of degrees of freedom in the RNA and DNA systems can be further limited using

experimental constraints, such as sets of pairwise inter-nucleotide distances (11). These

techniques used in concert sufficiently simplify the systems to a degree where

computational simulation is feasible and practical.

1.3.7 Coarse-grained Lipid Model

The three-bead lipid model is useful for the study the self-organization of lipids (12). The

first bead represents both the lipid head group and the glycerol backbone, and the

second and third beads each represent a fatty acid chain. All beads are of identical

diameter, σ. Both bonding and flexibility potentials are represented as discrete square-

well functions. Flexibility is governed by the angle formed between the two bonds in the

three-bead chain. The bond angle potential is also represented as an infinite square well

as a function of distance between the first bead and the last bead.

 14

Intermolecular attractive interactions between fatty acid chains are modeled by a two-

step discrete potential. For distances between σ and σ + w, where w is an adjustable

parameter, the potential is −ε. The tail–tail potential is set to zero for distances greater

than σ + w, and infinity for less than the hard-sphere radius. Head-head and head-tail

intermolecular pairs are defined as non-interacting, with the exception of hard-sphere

repulsion.

1.3.8 Non-biological systems

πDMD is not only a simulation engine for biological molecules, but in fact has its roots in

non-biological chemical and physical systems (13). Any system for which a PDB

formatted file exists or is created may be explored with πDMD simulations. The πDMD

package contains parameters for most atom types, including some metal ions. πDMD is

ideal for systems with large degrees of freedom, for example the simulation of liquids

and artificial materials.

1.4 Medusa Force Field

All-atom πDMD utilizes the Medusa force field, a weighted sum of seven energetic terms:

E =Wvdw_attrEvdw_attr +Wvdw_ repEvdw_ rep +WsolvEsolv +WesEes +

Wbb_hbondEbb_hbond +Wsc_hbondEsc_hbond +Wbb_ sc_hbondEbb_ sc_hbond

where Evdw_attr and Evdw_rep are the attractive and repulsive parts of the van der Waals (VDW)

interaction, Esolv is the solvation energy, Ees is the electrostatic interaction potential, and Ebb_hbond,

Esc_hbond, and Ebb_sc_hbond are the hydrogen bonding energies for backbone-backbone, side chain-

side chain, and backbone-side chain interactions, respectively. A full description of the Medusa

force field can be found in (14-16).

The VDW interaction model and parameters for the Medusa force field are adapted from

CHARMM19 (17). Medusa utilizes the EEF1 implicit solvent model proposed by Lazaridis and

Karplus (18) and the hydrogen bonding model proposed by Kortemme and Baker (19). The

cutoff distance for all non-bonded interactions is 9.0 Å.

 15

The Medusa force field is discretized for use in all-atom πDMD by mimicking the attractions and

repulsions between interacting pairs. The VDW and solvation energies are modeled as pairwise

functions of distance. Both the Lennard-Jones and Lazaridis-Karplus functions are fit to a multi-

step square-well function, characterized by the atomic hardcore radius and a series of potential

steps. The potential steps are based on pairwise distances, the set of which parameters are

determined from experimentally-determined distributions in a non-redundant database of high

resolution protein structures.

The Medusa force field includes electrostatic interactions between charged residues, including

basic and acidic residues. The central atoms of charged groups (CZ for Arg, NZ for Lys, CG for

Asp, and CD for Glu) are assigned integer charges. Screened charge-charge interactions are

modeled by the Debye-Hückel approximation. The Debye length is set at 10 Å, assuming a

monovalent electrolyte concentration of 0.1 mM. The water relative permittivity is set to 80 for

computation of the screened charge-charge interaction potential. The continuous electrostatic

interaction potential is discretized for use in πDMD with an interaction range of 30 Å; beyond

this range, the screened potential is zero.

1.5 Hydrogen Bonding Reaction Algorithm

Hydrogen bonding reactions are modeled using the Reaction Algorithm. Upon the formation of a

hydrogen bond between non-adjacent residues i and j, Ni and Cj change their atom types to N′i

and C′j, respectively. Whether or not a hydrogen bond will form depends not only on the

 16

interacting atoms, but also on interactions between the neighbors of these atoms, called

auxiliary interactions. Distances between neighboring atoms are included in the calculations in

order to mimic the orientation-dependence of the hydrogen bond interaction. Once N and C

reach the appropriate distance range for interaction, the auxiliary interaction distances are

evaluated in order to assign the total potential energy change between Ni–Cj and other

surrounding atoms both before and after the putative hydrogen bond formation.

A two-step potential is used when assigning energy to auxiliary interactions, in order to allow

some angular distortion in exchange for an energetic penalty. If the auxiliary interaction

distances satisfy the pre-determined range, and the total kinetic energy of the interacting atoms

(minus any angular distortion penalty) is enough to overcome the potential energy change,

formation of the hydrogen bond is allowed. If these conditions are not satisfied, the hydrogen

bond does not form. All possible interactions between backbone–backbone, backbone–side

chain, and side chain–side chain atoms are included. A full discussion of the Reaction Algorithm

can be found in (7).

2 πDMD with Replica Exchange

Replica exchange is a technique developed to enhance the exploration of the potential energy

landscape during molecular simulations. This enhanced sampling aids in the complete

description of the structure and thermodynamics of molecular systems, the central theme of

most molecular modeling applications.

At any given temperature, the ruggedness of the free energy landscape and the slope toward

local minima govern the structural sampling efficiency. Simulation at high temperatures can

accelerate escape from local minima and therefore improve sampling, but the free energy

landscape is then altered by the larger entropic contributions brought about by thermal structural

fluctuations. In order to overcome energy barriers while still maintaining energetically-relevant

conformational sampling, the replica exchange method utilizes multiple simulations (replicas) of

SophiaZhang
Highlight

 17

the same system in parallel, with each simulation performed at a different temperature (20,21).

The temperature range used usually corresponds to a spectrum of structures, from native-like to

melted. At periodic time intervals, simulation temperatures are exchanged between replicas

based on a Monte Carlo-type function. Temperatures are exchanged between two replicas i and

j, maintained at temperatures Ti and Tj and with energies Ei and Ej, according to the canonical

Metropolis criterion with the exchange probability p:

p =min 1, e
Ei!Ej() 1

kBTi
!
1

kBTj

"

#
$$

%

&
''

"

#

$
$

%

&

'
'

πDMD utilizes the Anderson thermostat to maintain constant temperature during simulation (22).

3 Input Files

Input to πDMD comprises two main parts: structural information and energetic information.

Structural information consists of the atom types, coordinates, velocities, and connectivity of the

system. Energetic information consists of the bonded and non-bonded potentials that will be

applied to the system, as well as system temperature and heat exchange parameters. In

addition, πDMD requires instructions for the simulation engine, such as how for how long to run

the simulation and how often to write the output files. The files in which this information is

supplied are described below.

3.1 File Formats

πDMD requires at least three input files, and up to five, depending on the type of simulation and

the desired constraints or long-range potentials. In this section, we will describe the formats of

these input files and the information that they contain.

3.1.1 Parameter File

The parameter file contains both structural and energetic information.

NUMBER OF ATOMS

The total number of atoms in the system, including particles of infinite mass (>108 Da)

that are used as “anchor points” for implementing system constraints.

SophiaZhang
Highlight

 18

ATOM TYPES

A list of the atom types with each type given a sequential number starting with 1. Each

atom type is followed by its respective mass and radius. For example:

#type mass radius

 1 12.000000 1.000000

 2 12.000000 1.055000

 3 12.000000 1.500000

 4 12.000000 1.590000

 5 12.000000 1.620000

NON-BONDED POTENTIALS

A list of each atom type interacting with each other atom type, and the respective non-

bonded potential steps for their interactions. The two atom types are listed, followed by

the hard-core radius, and then the radii and energies of the successive potential steps.

For example:

#type1 type2 hc r1 ΔE1 r2 ΔE2
 1 1 0.1000 0.2900 -1.0000 0.4800 -1.0000

If the non-bonded interaction potential is not defined, πDMD will treat their interaction as

a simple hard sphere collision, where the interaction radius is the sum of the two

corresponding hard-core radii, given in ATOM TYPES.

 19

REACTION POTENTIALS

Reaction potentials describe the potential steps for all possible second-order chemical

reactions between the various atom types that involve the formation of a bond. The

resulting bond may be permanent, in which case the last potential step will be the limit of

an infinite square well and the atoms are not allowed to move outside of reaction range,

or non-permanent, in which case it will be broken if the atoms move outside the distance

of the last potential step. Whether the bond is permanent or non-permanent, all second-

order reactions are reversible. The probability of breaking the bond formed in a second-

order reaction is determined by reaction energy, not by the shape of the reaction

potential. The reaction potentials are defined using the same format as the un-bonded

potentials, above, with the exception of the last energetic term being removed if the

reaction results in a permanent bond. Removal of this term results in an infinite square

well limit by default:

#type1 type2 hardcore Δr1 ΔE1 Δr2 ΔE2 Δr3 ΔE3 Δr3 …

 89 91 1.76 2.20 -0.60 2.50 -0.60

 12 91 2.64 3.10 -0.60 3.50 -10.00 3.99 10.60 4.00

REACTIONS

Second-order chemical reactions between various atom types are described in the

reactions section. When two atoms undergo a second-order chemical reaction, they

change their atom types. The format of this section lists the old atom types, the new

atom types after the reaction, whether the reaction results in the formation of a bond (1

or 0), the length of the bond formed (or the interaction distance, if the reaction forms a

non-permanent bond), the change in energy, and the difference in reactor index

necessary for the interaction to occur. The difference in reactor index is assigned in

order to avoid forming second-order bonds within the same residue or between residues

adjacent in sequence. The reactor index is described in the REACTION LIST, below.

#old1 old2 new1 new2 isbond d dE delta_idx

 1 15 89 90 1 2.5 0 4

REACTION LIST

 20

The reaction list identifies the atoms that are capable of undergoing second-order

chemical reactions, such as hydrogen bonds. If the atom index is not listed in this

section, that atom will never be considered for forming a hydrogen bond. Each atom is

given a reactor index, which places it in a group of atoms that should not form hydrogen

bonds between themselves. Atoms with the same reactor index, or with a difference in

reactor index less than that defined for the reaction (see REACTIONS, above), will not

undergo a second-order chemical reaction. Also listed for each atom are the neighboring

atoms that will undergo auxiliary interactions upon the formation of a hydrogen bond

(see section 1.5 on the hydrogen bonding reaction algorithm). An example entry on the

reaction list:

#atomIndex reactorIndex reactorAssociates

 5 1 4

 11 2 10

 20 3 19

 21 3 19

In this example, atom 5 has been assigned to reactor index group 1, and atom 4 will

undergo an auxiliary interaction when atom 5 forms a hydrogen bond. Atoms 20 and 21

have both been assigned to reactor index group 3, meaning that, with a reactor index

difference of 0, the reaction listed above (REACTIONS), with a required difference in

reactor index of 4, will never form between atoms 20 and 21. When either atom 20 or 21

undergoes a second-order reaction, atom 19 will undergo an auxiliary interaction.

BONDED POTENTIALS

Bonded potentials describe the step potentials for various types of covalent bonds. The

format of this section includes a potential index, which is referenced later in the

connectivities section, below, and the potential that describes that specific covalent bond

type. The potentials described here have the same format as in the unbounded

potentials, with the exception that the last step does not have an energetic value

attached; this final step is the limit of the infinite square well that describes bonded

interactions in πDMD. In this implementation of bonded interactions, a covalent bond

may never be broken.

CONNECTIVITIES

 21

The connectivities section describes which atoms are covalently bonded, and the

specific type of covalent bond by which they are linked. The format for this section lists

the two atom indices and the potential index (described in BONDED POTENTIALS).

3.1.2 State File

The state file contains a snapshot of the system. This file contains the coordinates and

velocities of each atom in the system, as well as the indices of the chain and residue to

which the atom belongs, in the format: atom index, atom type, x, y, z, vx, vy, vz, chain

index, residue index. The chain index and residue index values are optional. The state

file also contains a line giving the dimensions of the simulation box. For example, the

first few lines of a state file:

DIMENSION

 300.00000 300.00000 300.00000

ATOMS

 1 26 147.08 145.65 137.17 -1.61 -0.31 0.95 1 1

 2 24 148.30 146.06 137.61 -0.95 0.25 1.70 1 1

 3 3 146.01 146.63 137.40 -0.85 -0.31 0.70 1 1

3.1.3 Constraint File

The constraint file contains the pairwise long-range potentials generated from user-

specified constraints. These constraints are given in the format of the two atom indices,

followed by the potential steps. The potential steps are described as in the non-bonded

and bonded potentials in the parameter file, above.

3.1.4 Start File

The start file contains the various control parameters for the system, such as the

simulation temperature, heat exchange coefficient, simulation time, and the filenames

and write times for the output files. For example, a short single-temperature simulation:

T_NEW 0.55

T_LIMIT 0.55

HEAT_X_C 0.1

RESTART_FILE dmd_restart

 22

RESTART_DT 1000

ECHO_FILE dmd_echo

ECHO_DT 10

MOVIE_FILE dmd_movie

MOVIE_DT 100

START_TIME 0

MAX_TIME 100000

Section 5.1 gives a full explanation of all control parameters in this file.

 3.1.5 Replica Exchange Input File

In order to perform replica exchange simulations using πDMD, a replica exchange input

file should be specified in the command line with the flag “-r” (details of command line

parameters and options can be found in section 5.2). This input file will contain

information on the number of replicas desired, their desired temperatures in reduced

units (T (K)  kB (kcal/molK)), and their restart files (when applicable). This input file will

also contain a name and file path for the replica exchange output file, described below.

For example, a replica exchange file for 4 replicas:

N_REPLICA 4

RX_DT 1000

REPLICA_STATE 0 p000.dmd_restart

REPLICA_STATE 1 p001.dmd_restart

REPLICA_STATE 2 p002.dmd_restart

REPLICA_STATE 3 p003.dmd_restart

REPLICA_TEMP 0 0.50

REPLICA_TEMP 1 0.55

REPLICA_TEMP 2 0.60

REPLICA_TEMP 3 0.65

RX_OUT RX_TEMP.out

Section 5.2 gives a full explanation of all control parameters in this file.

 23

3.2 Simulations With Constraints

In addition to the coarse-grained potentials and parallelization found in πDMD, the introduction

of experimental results as system constraints is an effective method to compensate for the

many calculations involved in the simulation of large biological molecules. The number of

degrees of freedom of the system is reduced by the incorporation of constraints, which

decreases the size of accessible conformational space, and therefore the number of possible

collisions and amount of calculation necessary to describe the dynamics of the system.

 3.2.1 Creating Input Constraints

During the simulation setup process, the user can create a set of constraints to apply to

the system in order to decrease the degrees of freedom and, with it, simulation time.

These constraints can come in several formats:

AtomPair AtomSelect#1 AtomSelect#2 Potential

Here, “AtomPair” is a keyword that denotes to the program that what follows is a

pairwise potential. “AtomSelect#1” is the first atom interacting in the constraint potential,

defined by the chain index, residue index, and atom name in the PDB file, separated by

“.”. The atom definitions are followed by the potential steps, as discussed above in

section 3.1.1 describing the parameter file. For example:

AtomPair 1.111.CA 2.1.SG2 2.0 3.364 1.2 4.094 -1.2 7.5

Static AtomSelections

The “Static” keyword denotes to the program that the following atoms should maintain

fixed position during simulation. The designated atoms are held fixed by anchoring them

to particles of infinite mass (>108 Da). “AtomSelections” defined in the same manner as

“AtomSelect,” above, with the additional ability to denote multiple atoms, residues, and

chains by using “,” to separate distinct entities, “-“ to separate two integers in order to

define a set of integers, and “*” as a wildcard to declare all of the chains, residues, or

atoms. For example:

Static 1-2.*.N,CA

 24

This line denotes that the backbone nitrogen and α-carbon atoms of all residues in

chains 1 and 2 should be held static.

Static 1-2,4.12,19.*

This line denotes that all atoms of residues 12 and 19 in chains 1, 2, and 4 should be

held static.

Static 1.1-4.CA

This line denotes that all α-carbon atoms of residues 1 to 4 in chain 1 should be held

static.

Harmonic AtomSelections

The “Harmonic” keyword denotes to the program that a harmonic potential should be

applied to constrain the following atoms within a certain distance of their initial

coordinates. The AtomSelections are given in the same manner as for the “Static”

keyword, above.

 3.2.2 Incorporating Additional Potentials

In addition to individual pairwise constraints, long-range potentials may also be

implemented in the constraints file. The pairwise nature of constraints also lends itself to

the expression of pairwise potentials. In order to incorporate long-range potentials into

πDMD simulations, the potential needs only to be expressed in a pairwise manner and

written in the input constraints file with the AtomPair keyword for each pair.

3.3 Generating πDMD Input Files

In all-atom πDMD, the main files directly input to the simulation engine can be generated by a

conversion program, complex.linux. This program reads the PDB and other structural files, as

well as user constraints, if applicable, and combines the information contained therein with the

Medusa force field parameters (section 1.4) to generate input files that the program can more

easily read. The exception is the start file, which contains basic simulation parameters such as

simulation temperature and length, and output filenames.

 25

 3.3.1 Parameter, State, and Constraint Files

The parameter, state, and constraint files that will be input to the simulation engine are

generated from structural files supplied by the user by the program complex.linux:

Usage:

 complex.linux -P paramDir -I complexPDB –D dimension –p outParam –s

 outstate

paramDir

This argument gives the path to the Medusa parameter directory. The program uses

parameters from the Medusa force field in order to interpret the structure and output the

necessary atom interactions and pairwise potentials.

complexPDB

This argument gives the path of the PDB file containing the coordinates that will be used

to initiate the simulations.

dimension

This argument gives the dimensions of the simulation box as “x,y,z” with no spaces in

between. If a single value is given, the simulation box will be cubic.

outParam

This argument gives the name of the output parameter file, which will be an input for the

πDMD simulations.

outState

This argument gives the name of the output state file, which will be an input for the

πDMD simulations.

In addition to these mandatory arguments, further optional arguments may be given in

order to address simulation specifics:

-T newTopParamFile

 26

This argument gives the path to the topology-parameter file, which contains the

filenames and paths to MOL2 files used for small molecule, ion, or lipid ligands. The

format of this file includes the “MOL” keyword, followed by the PDB name of the

molecule and the path to the file. For example:

MOL GSH ./GSH.mol2

New atom types may also be defined in the topology-parameter file, using the keyword

“ATOM TYPE,” followed by the name of the atom type and its non-bonded (VDW and

solvation) interaction potential.

-S seed

This argument gives the seed for the random number generator. In order to perform

reproducible simulations, this parameter should be set to a non-zero integer value. If this

parameter is not specified, the default random seed is -111.

-C inConst

This argument gives the path to the user-generated input constraints file, described

above in section 3.2.

-c outConst

This argument gives the name of the output constraint file, which will be an input for the

πDMD simulations. Please note that this file is different than the user-generated input

constraint file for complex.linux.

-Z dzLip

This argument is used in the simulation of membrane proteins, and gives the thickness

of the coarse-grained lipid membrane.

-n

Usage of this argument will avoid the translation of the PDB coordinates. By default, the

system coordinates are translated so that the center of mass of the system is located at

the origin in the simulation box.

-d

 27

Usage of this argument will idealize the bonds and angles of the system, minimizing and

removing clashes according to the parameters of the Medusa force field.

 3.3.2 Start File

The start file contains the control parameters for the simulation. These control

parameters include simulation start and end times, simulation temperature, and the

names of the πDMD output files and how often they are written. Definitions for these

control parameters are contained in section 5, and an example start file is provided in

section 3.1.5.

3.4 Creating Input Files for Coarse-grained Models

The πDMD engine is able to simulate the dynamics of a broad range of molecular systems,

given the proper input files. As discussed above, the parameter and constraint files provide the

types and potentials for particle interactions, while the state file contains the coordinates and

velocities of those particles. In this section, we will first discuss the general principles of defining

a molecular system and creating the parameter and constraint files. Then, we will outline

examples of various coarse-grained developed for DMD simulations, discussed in greater detail

in Section 1.3.

In order to physically model the dynamics of a molecular system, we need to define particles

and assign their interactions. These particles may consist of atoms in an all-atom model, or may

represent groups of atoms or residues in a coarse-grained model. For simplicity, we will simply

refer to particles as “atoms” for the duration of this User’s Guide; any occurrence of “atom” can

also be taken to mean “particle.” The particles are defined using atom types, and the assigned

interactions include both the non-bonded and bonded potentials between the various atom

types.

First, one needs to identify all atom types in the system, and determine their corresponding

masses and hardcore radii. By default, each atom pair is assigned only the non-bonded

interaction of hardcore (perfectly elastic) collision, where the hardcore distance is the sum of the

hardcore radii of the two atoms. Additional interactions can be defined as non-bonded potentials

(NON-BONDED POTENTIALS, Section 3.1.1). We note that non-bonded interactions are

defined in a pairwise manner, according to the interacting atom types.

 28

Given that the majority of biomolecules are polymers, we need to introduce bonded interactions

in order to model their shape and geometry. Bonded interactions include covalent bond (atoms i

and i+1), bond angles (atoms i and i+2), and dihedrals (atoms i and i+3). A definition of bonded

interaction potentials can be derived from statistical analysis of PDB structures. The format for

describing bonded interactions and atom connectivity is discussed above in Section 3.1.1. We

note that the connectivity of bonded interactions is defined by atom indices.

In all but the very coarsest-grain molecular models, hydrogen bonding interactions must be

included for proper simulation of dynamics. Hydrogen bonding in πDMD is modeled by the

reaction algorithm (Section 1.5). The concept of the reaction algorithm is that an atom of type A

and an atom of type B can change their types to type A’ and B’, respectively, when the two

atoms come within a given interaction range. Therefore, the interactions associated with these

new atoms types, including both non-bonded and bonded interactions, must be defined. The

non-bonded interactions related to the reacted atoms are treated identically to other non-bonded

interactions, previously discussed. The bonded interactions associated with “reacted” atoms,

however, are treated differently. The bonded reaction interactions include 1) a temporary bond

assigned between two reacted atoms; and 2) auxiliary bonds (see Section 1.5) that define the

angular dependence of the temporary bond. These reaction-related bond interactions are

defined in the reaction potentials section (REACTION POTENTIALS, Section 3.1.1), and the

reactions themselves are defined in the reactions section (REACTIONS, Section 3.1.1). The

reaction list section (REACTION LIST, Section 3.1.1) defines the reactor associates (the

auxiliary atoms for each reaction-competent atom) and the reactor index that is used to prevent

reactions between neighboring reactants along a polymer sequence.

The constraints file (described in detail in Section 3.1.3) can be used to define additional

interactions that are not defined in the parameter file. By default, interactions described in the

constraint file will override other interactions that the atoms otherwise would have had with each

other, although this behavior can be changed using the -fb flag when initiating πDMD

simulations (Section 5.1). In πDMD simulations, the interactions between two atoms are

assigned only one of the possible types of interactions, with the following priorities: 1)

constraints, 2) bonded potentials, and 3) reaction-associated (temporary) bonds, 4) non-bonded

potentials. In this way, the constraint file provides an additional flexibility to the modeling of

molecular systems in πDMD.

 29

In summary, the input parameter and constraint files for πDMD provide flexibility in the definition

of molecular systems. As a result, the user can define any arbitrary model to mimic the system

of interest. Next, we will describe as examples several coarse-grained models that have been

previously developed. We will focus mainly on the definition of atoms types and bonded and

non-bonded interactions.

 3.4.1 1-bead Protein Model

The one-bead model, described in Section 1.3.1, uses only the α-carbon atom, Cα, to

represent each amino acid. Bonded interactions include the peptide bond between

neighboring Cα atoms (Cαi, Cαi+1), and the next nearest neighboring Cα atoms (Cαi, Cαi+2).

The average distance between Cαi and Cαi+1 is approximately 3.83 Å. The standard

deviation of these distances can be derived from statistical analysis of PDB structures.

Because the bond length variation determines the frequency of bond oscillation, which

consists of the largest portion of CPU time in πDMD, a wider bond variation may be

used, given the condition that wider bond variation does not significantly distort the

structure. In this case, the bond variation is defined as ±2% of the average Cα-Cα

distance. The potential steps for the infinite square well of the bond are therefore defined

as:

3.75 3.91

For the bonded interaction between (Cαi, Cαi+2), statistical analysis of the distance

distributions suggests two peaks, corresponding to alpha-helical (peaks at 5.30 Å and

5.60 Å) and extended (peaks at 6.25 Å and 7.20 Å) conformations:

 5.30 5.60 -E_barrier 6.25 7.20

Here, E_barrier is the energy barrier, which can be defined according to the energy

scales.

For non-bonded interactions, the structure-based Gō model (23,24) may be used to

ensure that the lowest-energy state is native-like. In the Gō model, the number of atom

types should be proportional to the number of atoms, since the interaction matrix is N×N,

where N is the number of residues. Native contacts are assigned attractive interactions:

 3.0 8.0 -E_attr

 30

where “3.0” corresponds to the hardcore distance, “8.0” corresponds to the maximum

interaction range, and E_attr is the attractive energy. Non-native contacts have weaker

repulsive interactions:

 3.0 8.0 E_rep

where the E_rep is a repulsive energy. The value of E_rep can be negative, but with

|E_rep| < |E_attr| (a weaker attraction as compared to native contacts), or positive

(repulsion). In the case where E_rep is zero, the non-native interactions are reduced to:

 3.0

Two approaches may be used to define the non-bonded interactions:

1) Define N atom types. In the non-bonded potentials section (NON-BONDED

POTENTIALS, Section 3.1.1), we define interaction potentials for each pair of atom

types, depending on whether they are native or non-native contacts.

2) Define one atom type. In the non-bonded poentials section (NON-BONDED

POTENTIALS, Section 3.1.1), we define only the non-native interactions. In the

constraint files, we define the native contacts with “capped” interaction potentials,

which produce an infinite square well:

 3.0 8.0 -E_attr D_MAX

Where D_MAX can be defined as a very large value, so that the two atoms cannot

exceed this distance while in the simulation box. Here, native contacts are defined

according to their atom indices.

By carefully choosing the energy values of E, E_attr, and E_rep, a 1-bead protein model

may be built. For example, E_attr = E_rep = 1.0 kcal/mol, and E_barrier = 2.0kcal/mol.

 3.4.2 2-bead Protein Model

In the two-bead protein model, each amino acid is represented by two atoms, the α-

carbon (Cα) and β-carbon (Cβ), as described in Section 1.3.2. The bonded interactions

include Cαi-Cβi, Cαi-Cβi+1, Cβi-Cαi+1. Cαi-Cαi+1, and Cαi-Cαi+2. Here, the first three terms

(those related to Cβ) are in addition to the 1-bead protein model. Based on statistical

 31

analysis, as well as practical considerations, we define the interaction potential of Cαi-Cβi

as:

 1.49 1.57

Cαi-Cβi+1 as:

 4.65 4.77 E_barrier 4.90

and Cβi-Cαi+1 as:

 4.40 4.80

Here, E_barrier is the energy that determines the probability of crossing the barrier.

Non-bonded interactions may be assigned according the Gō model (23,24) in order to

ensure that the ground state is native-like. For simplicity, we choose the Cβ atom (Cα

atom for glycine) as the interaction center for each amino acid. In the Cβ-based contacts,

7.5 Å is a commonly-used interaction range. Other non-bonded interactions are

represented as hardcore collisions. Similar to the 1-bead protein model, we may adopt

two approaches to define the molecular system:

1) Define N+1 atom types, which include the Cα type along with N Gō-interaction

centers. In the non-bonded potentials section (NON-BONDED POTENTIALS,

Section 3.1.1), all pairwise interaction potentials are defined, depending on whether

the atom pair is native, non-native, or will be modeled by a hardcore collision.

2) Defined 2 atom types. In the non-bonded potentials section of the parameter file

(NON-BONDED POENTIALS, Section 3.1.1), only the non-native interactions are

described. In the constraint file, native contacts with “capped” interaction potentials

are defined, as described for the 1-bead model.

 3.4.3 4-bead Protein Model

In the four-bead protein model, the N, C, Cα, and Cβ atoms are represented, as

described in Section 1.3.3. In addition, the atoms N and C may form hydrogen bonds

and change their type to N’ and C’. The bonded interactions are defined in detail in (7).

In the case of Gō-interaction models, the same approaches may be used as in the one-

and two-bead models. We can also assign hydrophobic-hydrophilic (HP)-like potentials

 32

(7). Here, we will focus only on the reaction modeling, which occupies three sections:

REACTION POTENTIALS, REACTIONS, and REACTION LIST.

REACTIONS

A description of the reactions section can be found in Section 3.1.1. In the four-bead

protein model, reactions are modeled as the following:

 N C N’ C’ 1 4.2 0 4

Here, N, C, N’, and C’ are the atom type indices, 1 suggests that a temporary bond is

assigned between bonded atoms, 4.2 is the maximum reaction range, and 4 is the cutoff

of difference in reactor indexes, smaller than which two reactors will not react. This cutoff

is used to exclude calculation of reactor collisions along the protein backbone that

cannot form hydrogen bonds. Since the reaction range is 4.2 Å, a potential step should

exist in the non-bonded interaction potential between N and C with a distance of 4.2 Å.

The energy corresponding to this step can be zero. For example:

 N C 3.0 4.20 0.00

Although the described potential is essentially a hardcore collision, the step should be

defined in order for the πDMD engine to check whether a reaction is feasible upon

colliision.

REACTION LIST

A description of the reaction list section can be found in Section 3.1.1. In the four-bead

protein model, the reaction list is produced as the following:

 1_C 1 1_CA 2_N

 2_N 2 1_C 2_CA

 2_C 2 2_CA 3_N

 3_N 3 2_C 3_CA

 ….

Here, 1_C is the atom index of carton atom of residue 1. Similarly, 1_N is the atom index

of N atom of residue 1, and 1_CA is the α-carbon of residue 1. The second column uses

the residue index as the reactor index. The third and fourth columns define the

associated auxiliary atoms used to define hydrogen bonds.

 33

REACTION POTENTIALS

A description of the reaction potentials section can be found in Section 3.1.1. In the four-

bead protein model, reaction potentials are modeled as the following:

 N’ C’ 4.00 4.20 –E_hb

 N’ CA 4.46 4.66 E_hb/2 4.82 E_hb/2 5.56

 N’ N 4.47 4.62 E_hb/2 4.78 E_hb/2 5.41

 N’ N’ 4.47 4.62 E_hb/2 4.78 E_hb/2 5.41

 C’ C 4.40 4.56 E_hb/2 4.72 E_hb/2 5.39

 C’ C’ 4.40 4.56 E_hb/2 4.72 E_hb/2 5.39

 C’ CA 4.44 4.62 E_hb/2 4.79 E_hb/2 5.39

Combining the above sections, hydrogen bonding interactions may be effectively

modeled the reaction algorithm.

 3.4.4 Quasi-all-atom Protein Model

In the quasi-all-atom model, additional side-chain beads and the carbonyl oxygen in the

backbone supplement the atoms included in the four-bead model, as described in

Section 1.3.4. Specifically, a gamma-bead (Cγ) is included for cysteine (Cys), methionine

(Met), phenylalanine (Phe), leucine (Leu), tyrosine (Tyr), serine (Ser), glutamine (Gln),

asparagine (Asn), glutamic acid (Glu), aspartic acid (Asp), and histidine (His) residues.

For the beta-branched residues such as valine (Val), isoleucine (Ile), and threonine (Thr),

we include the a second gamma bead, Cγ2. For the bulky residues tryptophan (Trp),

arginine (Arg), and lysine (Lys), we include an additional delta bead (Cδ). Detailed

interaction parameters can be found in the (8), including parameters for both bonded

and non-bonded interactions.

In addition to backbone-backbone hydrogen bonds, the quasi-all-atom model also

includes side-chain-backbone hydrogen bonding interactions. Specifically, the hydrogen

bond acceptors include the Cγ2 bead of threonine, and the Cγ bead of serine, asparagine,

and aspartic acid. The hydrogen bond donors include the Cγ2 bead of threonine, and the

Cγ bead of asparagine, glutamine, and serine. Interaction details can be found in the

supporting material of (8). By following the principles described in Section 3.4.3, both

 34

side-chain-backbone and backbone-backbone hydrogen bonds can be effectively

modeled.

 3.4.5 Coarse-grained RNA and DNA Models

In the coarse-grained RNA or DNA model, each nucleotide is represented by the

phosphate (P), sugar (S), and base (B) bead, as described in Section 1.3.6. The P bead

corresponds to the phosphate atom, the S bead represents the center of mass of the 5-

atom sugar pucker, and the B bead corresponds to the centroid of the six-atom ring in

both purine and pyrimidine bases.

The details of the interaction parameters for coarse-grained DNA molecules are

described in (5). Base pairs are constrained without the explicit modeling of hydrogen

bonds. Therefore, definition of the bonded and non-bonded interaction potentials in the

parameter and constraint files is straightforward.

In the case of RNA, the goal of simulations is often to predict the folding of a single-

stranded RNA into specific structures. Base pairs are modeled by hydrogen bonds

between complementary nucleotides. Details of the interaction parameters for base-

pairing interactions can be found in (9). We note that, due to strong coupling between

hydrogen bonding and stacking interactions, simulation of coarse-grained RNA may not

be parallelized.

 3.4.6 Coarse-grained Lipid Model

The specifics of the coarse-grained lipid model are discussed in Section 1.3.7. The

implementation of the coarse-grained lipid model in πDMD is very straightforward,

without the complication of hydrogen bonding interactions. Following the same principles

described above, and applying the interaction parameters defined in (12), one may

create the input parameter and constraint files for molecular modeling of the coarse-lipid

system.

 36

4.3 Restart File

At an interval specified by the user in the start file (see section 5.1 for how to specify this

interval), πDMD will save a snapshot of the system particle locations and velocities. This

snapshot, saved in the restart file, can serve as a “bookmark” of sorts for restarting the

simulation if an error or run-time limit should occur. The restart file has the same format as the

input state file (described in detail in section 3.1.2), and upon restarting the simulation, will be

given in place of the state file after the “-s” flag (see sections 5.1 and 5.2 for command line

usage, or πDMD Tutorial section 2.4 for an example of restarting a πDMD simulation). The

restart file is overwritten at each interval, so that at any given time there exists only one

snapshot, the most recent “bookmark.”

4.4 Replica Exchange Output File

The πDMD protocol outputs a file that tracks the temperature of each replica throughout the

simulation. At a user-specified interval during the simulation, one line prints the time step

followed by each temperature. For instance, in a simulation with 4 replicas and a RX_DT of

2000:

0.0000 0.5000 0.5500 0.6000 0.6500

2000.0000 0.5000 0.6000 0.5500 0.6500

4000.0000 0.5500 0.6500 0.5000 0.6000

6000.0000 0.5000 0.6500 0.5500 0.6000

This information is necessary for the calculation of replica exchange rate, which is an indicator

of proper replica spacing and sampling. The πDMD package includes a Perl script, rx_rate.pl,

for calculating the exchange rate from the replica exchange output file.

5 Program Options and Simulation Parameters

 35

4 Output Files

πDMD produces three output files in single-trajectory mode, and four for replica exchange

simulations. In this section, we will describe the file formats and the type of information that they

contain.

4.1 Movie (Trajectory) File

The primary output file of πDMD is the movie file, or the trajectory. The movie file tracks the

coordinates of each atom at a user-specified interval, given in the start file (see section 5.1 for

how to specify this parameter). The movie file is in binary format, so as to economize disk space.

In order to convert the movie file to a human-readable format, the πDMD package provides the

complex_M2P program, the usage of which is outlined in section 7.

4.2 Echo File

The πDMD echo file tracks the energetic and thermodynamic information of the system as the

simulation progresses. At an interval specified by the user in the start file (see section 5.1 for

how to specify this parameter), πDMD will report the time step, average temperature, average

pressure, average potential free energy, instantaneous potential free energy, and the

instantaneous kinetic energy and write these parameters to the echo file. For example, the first

50 time steps of a simulation with ECHO_DT specified as 10:

Time aveTemperature avePressure avePotential instPotential instKineticE

 10.000 0.44242 0.0000000017 -268.12470 -269.74085 192.05882

 20.000 0.45152 0.0000001196 -259.78069 -265.06802 196.31415

 30.000 0.45984 0.0000000184 -262.38298 -263.20668 204.69417

 40.000 0.46091 -0.0000001110 -264.70496 -261.02619 191.51733

 50.001 0.44770 0.0000000762 -268.62775 -272.51062 187.09288

Time is measured in πDMD time steps, temperature values are given in πDMD reduced units (T

(K)  kB (kcal/molK)), pressure values are given in kcal/molÅ3, and energetic values are given

in kcal/mol.

 37

πDMD is capable of performing both single trajectory and replica exchange simulations. Single

trajectory simulations are useful for studying native-state dynamics. Replica exchange

simulations provide enhanced sampling by performing multiple simulations in parallel at a range

of temperatures, and periodically swapping the system temperatures. In this way, efficiency is

increased by allowing the system to overcome free energy barriers while maintaining

conformational sampling according to the relevant free energy surface.

5.1 Single Trajectory Simulations

Usage:

 pdmd.linux [OPTIONS] -i start_file -p param_file -s state_file

The parameter, state, and start files are required inputs to πDMD. The generation of these files

has been discussed in Section 3. In brief, the parameter file contains parameters for atom types

and bonded and non-bonded potentials, the state file contains a system snapshot of particle

positions and velocities from which to start the simulation, and the start file contains the

simulation control parameters. These parameters include:

HEAT_X_C

This parameter denotes the heat exchange coefficient. The heat exchange coefficient indicates

the rate of heat transfer between the thermostat-maintained implicit solvent and the system.

Roughly, dt = 1/HEAT_X_C. This rate will need to be adjusted depending on simulation

temperature, temperature change over the simulation, and the total simulation time. For single-

temperature trajectories, a common heat exchange coefficient is 0.1.

T_NEW

This parameter denotes the starting temperature of the simulation, in reduced units: T (K)  kB

(kcal/molK). If this parameter is specified, the velocities contained in the input state file will be

re-scaled accordingly.

T_LIMIT

This parameter denotes the ending temperature of the simulation, the maximum (or minimum)

temperature that will be attained.

 38

RESTART_FILE

This parameter specifies the name of the output restart file. The default name of this file is

"dmd_restart." The restart file is overwritten during the simulation in order to provide only the

most current “bookmarked” snapshot of the system.

ECHO_FILE

This parameter specifies the name of the output file for the energy, pressure, and temperature

at given time steps (see ECHO_DT, below)

MOVIE_FILE

This parameter specifies the name of the movie (trajectory) output file.

RESTART_DT

This parameter specifies the number of time steps between saving the restart file. The default

value of this parameter is 1000.

ECHO_DT

This parameter specifies the number of time steps between saving the energy, pressure, and

temperature of the system.

MOVIE_DT

This parameter specifies the number of time steps between writing the snapshot of the system

to the movie file.

MOVIE_SAVE_START

This parameter specifies the starting atom to be saved. The default of this parameter is 1. The

value of this parameter should NOT be changed without extensive knowledge of the system.

MOVIE_SAVE_END

This paramter specifies the last atom in the system to be saved. The default value of this

parameter is the last atom in the system according to the input state file. The value of this

parameter should NOT be changed without extensive knowledge of the system.

START_TIME

 39

This parameter specifies the initial time when the simulation starts. The default value of this

parameter is 0. If a value other than 0 is given, the output files will be appended instead of

overwritten.

MAX_TIME

This parameter specifies the maximum number of time steps for the simulation. At the given

time, the simulation will be complete.

RANDOMSEED

This parameter controls the random seed for the random number generator. In order to perform

reproducible simulations, this parameter should be set to a non-zero integer value. If this

parameter is not specified, the system time will be used as the random seed.

COMPRESS

This parameter will compress the output files in gzip format when set to an integer value 1-9.

Compression typically will reduce the size of the movie file by half. Alternatively, any output file

name (see above) can be specified with a “.gz” extension in order to compress only this file.

Compressed (gzip) input is recognized automatically, and does not depend on file extension.

For advanced tuning of the πDMD algorithm, higher-level users may refer to the source

documentation for further control parameters. Additional options for πDMD can be controlled

using various command line flags:

-c <path>

This flag denotes the location of a user-created file that contains additional constraints or long-

range potentials to amend the force field.

-m <number>

This flag enables multithreading using <number> logical CPUs.

-fa

This flag controls the overwriting of πDMD output files. When this flag is used, the output files

will be appended. Without this flag, the files will be overwritten by default, or appended if a start

time other than 0 is given.

 40

-fb

This flag will allow the use of both the generic force field bonded potentials and the user-created

long-range constraints (when the “-c” flag is used). Without this flag, the user-created

constraints will replace the bonded interactions for those atom pairs included in the user-created

constraint file.

-fn

This flag will allow the use of both the generic force field non-bonded potentials and the user-

created long range constraints (when the “-c” flag is used). Without this flag, the user-created

constraints will replace the non-bonded interactions for those atom pairs included in the user-

created constraint file.

-fl

Use of this flag will treat those atom pairs interacting via additional long-range potentials as

covalently bonded when writing the output movie file. When viewing the trajectory using

molecular visualization software, these atoms wil appear as covalently bonded.

-fc

Use of this flag moves the center of mass of the system to the center of simulation box at start.

-fh

Use of this flag permits atoms to form multiple hydrogen bonds, as opposed to only one by

default.

-fr

Use of this flag disables rounding to 0. If this flag is not used, the lower bounds of all potentials

that are equal to or less than the threshold (currently 1e-05) will be rounded to 0.0 by default.

-ft

Use of this flag disables the detection of hyper-threading. Without this flag, the default behavior

is to detect and avoid hyper-threading.

-fx

 41

Use of this flag enables output of an extended movie format with 32-bit integers and floats.

Without this flag, the default output movie format is 16-bit.

-q

Quiet option. Use of this flag suppresses most program messages. This flag can be specified up

to three times in order to suppress minimal program output and warnings. Critical errors that

terminate the program are not suppressed.

-v

Verbose option. Use of this flag increases program verbosity; more messages will print to the

command line.

5.2 Replica Exchange Simulations

Usage:

 rexpdmd.linux [OPTIONS] -i start_file -p param_file -s state_file -r rx_file

Replica exchange simulations employ the exact same parameters and option as do single

trajectory simulations, with the addition of a replica exchange file. The replica exchange file is

optional in that the parameters included in this file may instead be stated in the start file.

However, in the case where both single trajectory and replica exchange simulations are being

performed for the same system, or in the interest of maintaining generic start files, these

parameters may instead be included in a separate replica exchange file, denoted here by the “-r”

flag. The control parameters used in this file include:

N_REPLICA

This parameter denotes the number of replicas that will be employed in replica exchange

simulations.

RX_DT

This parameter denotes the number of time steps between attempted swaps of temperature

replicas. This parameter is also the spacing of each line of output in the replica exchange output

file, which records the temperatures of each replica at a given time.

 42

REPLICA_STATE

This parameter is only relevant to simulations that are being restarted. This parameter should

be followed by the sequential number of the replica, starting with zero, and the name of the

desired restart file. For instance, in a system with 4 replicas:

REPLICA_STATE 0 p000.dmd_restart

REPLICA_STATE 1 p001.dmd_restart

REPLICA_STATE 2 p002.dmd_restart

REPLICA_STATE 3 p003.dmd_restart

When initiating the simulation for the first time, this parameter is not included. Without

specification, the state file used for each replica will be the same, as indicated in the command

line with the “-s” flag.

REPLICA_TEMP

This parameter denotes the simulation temperature for each replica. This parameter should be

followed by the sequential number of the replica, starting with zero, and the simulation

temperature for each replica, in reduced units: T (K)  kB (kcal/molK). For instance, in a system

with 4 replicas:

REPLICA_TEMP 0 0.56

REPLICA_TEMP 1 0.60

REPLICA_TEMP 2 0.63

REPLICA_TEMP 3 0.66

Relevant temperatures will vary by system. These temperatures will override the temperature

denoted in the start file with the T_NEW or T_LIMIT control parameters.

RX_OUT

This parameter denotes the name of the output replica exchange file, which records the

temperatures of each replica at a given time.

6 Running πDMD

 43

The speed-up of πDMD over the DMD serial algorithm is most dramatic when running on large

computing clusters with many nodes available. However, πDMD is fast and efficient enough to

perform meaningful simulations on a laptop computer.

6.1 System Architecture

πDMD may be used on single workstations with multiple cores, networks of single workstations,

or computing clusters. πDMD requires multiple cores for parallel scaling, but will also run on

single-core machines using the non-parallelized DMD algorithm. The software does not require

parallel extensions in order to compile. When utilizing networks of workstations for πDMD

simulation, it is advised that the machines to be homogenous. For replica exchange simulations,

especially, efficiency will be limited by the speed of the slowest node. Every RX_DT time steps

(see Section 5.2 for a description of this control parameter), the separate simulation replicas will

attempt to swap temperatures, and will need to wait for all replicas to reach the same simulation

time. If nodes in the network are of significantly different speeds, the simulation will effectively

pause to wait for the slowest node to catch up to the others in simulation time before attempting

the exchange, potentially losing any benefit in speed-up.

6.2 Memory Usage and Scaling

The high rate of data exchange between threads causes πDMD to be highly dependent on the

speed of memory access. On modern processors, such the Intel Xeon or AMD Opteron, the

highest exchange rate is achieved between the cores of a single multi-core CPU. Therefore, the

best scaling of πDMD is achieved when all threads run on CPU cores on the same dye.

πDMD performance highly depends upon the average number of neighbors per atom. Generally,

simulations of compact objects, such as collapsed globular proteins, are more computationally

costly than simulations of dilute systems such as unfolded proteins. Compact objects have on

average more buried atoms, which have a greater number of neighbors than do surface atoms,

and require more calculations to predict the next collision.

In large systems, a randomly chosen pair of atoms is likely to have a greater distance between

them than in small systems. Large systems therefore enjoy a decrease in the probability of

event coupling, and hence a decrease in the fraction of cancelled events (wasted calculations).

 44

In πDMD simulations of large biological molecules, the decrease in event coupling

compensates for the increase in number of calculations, resulting in a nearly linear dependence

of simulation time on protein length (Shirvanyants et al. (2011), submitted).

7 Analysis of πDMD Simulations

πDMD trajectories are output in binary format. Analysis programs may either be designed to

directly read the movie file format, or the PDB format conversion program (included in the

πDMD package) may be used to output a human-readable format:

Usage:

complex_M2P.linux <paramDir> <complexPDB> <newTopParamList> <movie>

 <outPDB> [constraints [startFrame [nFrames [dFrames]]]]

paramDir

This argument gives the path to the Medusa parameter directory. The program uses parameters

from the Medusa force field in order to interpret the trajectory and output the PDB file format.

complexPDB

This argument gives the path of the PDB file that was used to create the simulation input files.

The PDB file is used to reassign the identities of each atom in the trajectory snapshots.

newTopParamList

This argument gives the path to the topology-parameter file, which contains the filenames and

paths to MOL2 files used for small molecule or ion ligands. If a topology-parameter file was not

used, the path /dev/null can be used for this argument instead.

movie

This argument gives the path to the movie file that will be converted to PDB format.

outPDB

 45

This argument gives the path and filename of the desired output PDB file. The output PDB file

will contain all specified snapshots of the trajectory, each separated by the “ENDMDL” card.

constraints

This optional argument gives the simulation input constraints, if used.

startFrame

This optional argument gives the desired start frame for PDB conversion. The default value is 1

(starting from the beginning of the simulation). If a number less than 1 is given, the program will

revert to default behavior. In order to specify this argument, the “constraints” argument (above)

must also be given. If the “startFrame” argument is desired but input constraints were not used,

the /dev/null argument may be given.

nFrames

This optional argument gives the desired number of frames that will be converted to PDB. The

default behavior will convert all frames in the movie file. In order to specify this argument, the

“constraints” and “startFrame” arguments must be given.

dFrames

This optional argument gives the number of frames between each converted snapshot. For

instance, if a movie contains 2,000 snapshots, but only 200 snapshots spread evenly

throughout the simulation are desired, a dFrames of 10 may be specified so that only frames 10,

20, 30, …, 2000 will be printed to the PDB output file. In order to specify this argument, the

“constraints,” “startFrame,” and “nFrames” arguments must be given.

Once converted to PDB format, πDMD movies may be viewed using PyMol, VMD, or similar

molecular visualization software. PDB files may also be used for standard structural and

dynamic analysis.

To assure maximal efficiency and sampling in replica exchange simulations, the exchange rate

between adjacent replicas should typically be between 0.25 and 0.5. At lower rates, the

sampling of the system is negatively affected because the replicas are not exchanging at

sufficient rate. At higher rates, the system is not able to equilibrate at the new temperature

before being swapped again. To calculate the exchange rate for a given simulation:

 46

Usage:

 rx-rate.pl RXtemp.out

Here, RXtemp.out is the replica exchange output file, described in section 4.4.

8 πDMD Installation

8.1 Compatible Platforms

πDMD has been optimized on Linux platforms, and will be compatible with Mac and all x86 CPU

UNIX-based platforms. Executables for these platforms are available on request to academic

users or to commercial users with registered software.

8.2 Compilation

In order for the algorithm to function in a parallelized manner, the compilation of πDMD requires

support of atomic built-ins, which are needed for thread synchronization. All recent versions of

GCC and ICC compilers include support for atomic built-ins. If these built-ins are unavailable,

Make will compile the single-threaded version of πDMD, and the program will use the non-

parallelized algorithm.

πDMD utilizes AutoTools with standard makefiles in order to facilitate optimal compilation with

little user input. For compilation, execute the following commands from the πDMD directory:

./configure

make

Further optimization is possible for advanced users.

8.3 Additional Documentation

Additional documentation is available for πDMD:

 47

πDMD Tutorial – provides examples and sample files for setting up, performing, and

analyzing simulations of several types of biological molecules.

πDMD QuickGuide – useful for diving straight into πDMD simulation, this guide

provides a simple list of instructions for setting up and conducting basic πDMD

simulations.

References

1. Proctor, E. A., Ding, F., and Dokholyan, N. V. "Discrete Molecular Dynamics." Wiley

Interdisciplinary Reviews: Computational Molecular Science, 1:80-92, (2011).

2. Dokholyan, N. V., Buldyrev, S. V., Stanley, H. E., and Shakhnovich, E. I. "Molecular

dynamics studies of folding of a protein-like model." Folding and Design, 3:577-587

(1998).

3. Ding, F., Tsao, D., Nie, H., and Dokholyan, N. V. "Ab initio folding of proteins with all-

atom discrete molecular dynamics." Structure, 16:1010-1018, (2008).

4. Khan, M. A., and Herbordt, M. C. “Parallel discrete molecular dynamics simulation with

speculation and in-order commitment.” Journal of Computational Physics, 230:6563-

6582 (2011).

5. Ding, F., Dokholyan, N. V., Buldyrev, S. V., Stanley, H. E., and Shakhnovich, E. I. “Direct

molecular dynamics observation of protein folding transition state ensemble.”

Biophysical Journal, 83:3525-3532 (2002).

6. Chen, Y., Ding, F., and Dokholyan, N. V. “Fidelity of the protein structure reconstruction

from inter-residue proximity constraints.” Journal of Physical Chemistry B, 111:7432-

7438 (2007).

7. Ding, F., Borreguero, J.M., Buldyrey, S.V., Stanley, H.E., and Dokholyan, N.V.

“Mechanism for the α-helix to β-hairpin transition.” Proteins, 53:220–228 (2003).

8. Ding, F., Buldyrev, S. V., Dokholyan, N. V. “Folding Trp-cage to NMR resolution native

structure using a coarse-grained protein model.” Biophysical Journal, 88:147-155 (2005).

9. Ding, F., Sharma, S., Chalasani, P., Demidov, V. V., Broude, N. E., and Dokholyan, N. V.

“Ab initio RNA folding by discrete molecular dynamics: from structure prediction to

folding mechanisms.” RNA 14:1164–1173 (2008).

 48

10. Sharma, S., Ding, F., and Dokholyan, N. V. “Multiscale modeling of nucleosome

dynamics.” Biophysical Journal 92:1457–1470 (2002).

11. Gherghe, C. M., Leonard, C.W., Ding, F., Dokholyan, N. V., and Weeks, K.M. “Native-

like RNA tertiary structures using a sequence-encoded cleavage agent and refinement

by discrete molecular dynamics.” Journal of the American Chemical Society 131:2541–

2546 (2009).

12. Davis, C. H., Nie, H., and Dokholyan, N. V. “Insights into thermophilic archaebacterial

membrane stability from simplified models of lipid membranes.” Physical Review E

Statistical and Nonlinear Soft Matter Physics, 75(5 Pt 1):051921 (2007).

13. Alder, B. J., and Wainwright, T. E. “Studies in molecular dynamics. I. General method.”

Journal of Chemical Physics, 31:459-466 (1959).

14. Ding, F., and Dokholyan, N. V. "Emergence of protein fold families through rational

design." Public Library of Science Computational Biology, 2:e85, (2006).

15. Yin, S., Biedermannova, L., Vondrasek, J., and Dokholyan, N. V. "MedusaScore: An

accurate force-field based scoring function for virtual drug screening." Journal of

Chemical Information and Modeling, 48:1656-1662, (2008).

16. Ding, F., Yin, S., and Dokholyan, N. V. "Rapid flexible docking using a stochastic

rotamer library of ligands." Journal of Chemical Information and Modeling, 50:1623-1632

(2010).

17. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and

Karplus, M. “CHARMM - A Program for Macromolecular Energy, Minimization, and

Dynamics Calculations.” Journal of Computational Chemistry, 4:187-217 (1983).

18. Lazaridis, T., and Karplus, M. “Effective Energy Function for Proteins in Solution.”

Proteins: Structure, Function, and Genetics 35:133-152 (1999).

19. Kortemme, T., Baker, D. “A simple physical model for binding energy hot spots in

protein-protein complexes.” Proceedings of the National Academy of Sciences U.S.A,

99:14116-14121 (2002).

20. Okamoto, Y. “Generalized-ensemble algorithms: enhanced sampling techniques for

Monte Carlo and molecular dynamics simulations.” Journal of Molecular Graphic

Modeling, 22:425–439 (2004).

21. Zhou, R., Berne, B. J., and Germain, R. “The free energy landscape for beta hairpin

folding in explicit water.” Proceedings of the National Academy of Sciences U.S.A,

98:14931– 14936 (2001).

 49

22. Andersen, H. C. “Molecular-dynamics simulations at constant pressure and/or

temperature.” Journal of Chemical Physics, 72:2384–2393 (1980).

23. Taketomi, H., Ueda, Y., Gō, N. “Studies on protein folding, unfolding and fluctuations by

computer simulation. I. The effect of specific amino acid sequence represented by

specific inter-unit interactions.” International Journal of Peptide and Protein Research,

7:445–459 (1975).

24. Gō, N. “Theoretical studies of protein folding.” Annual Review of Biophysics and

Bioengineering, 12:183–210 (1983).

