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ABSTRACT: Until now it has been impractical to observe
protein folding in silico for proteins larger than 50 residues.
Limitations of both force field accuracy and computational
efficiency make the folding problem very challenging. Here we
employ discrete molecular dynamics (DMD) simulations with
an all-atom force field to fold fast-folding proteins. We extend
the DMD force field by introducing long-range electrostatic
interactions to model salt-bridges and a sequence-dependent
semiempirical potential accounting for natural tendencies of
certain amino acid sequences to form specific secondary
structures. We enhance the computational performance by parallelizing the DMD algorithm. Using a small number of
commodity computers, we achieve sampling quality and folding accuracy comparable to the explicit-solvent simulations
performed on high-end hardware. We demonstrate that DMD can be used to observe equilibrium folding of villin headpiece and
WW domain, study two-state folding kinetics, and sample near-native states in ab initio folding of proteins of ∼100 residues.

■ INTRODUCTION
Uncovering the relationship between protein structure and its
sequence is the cornerstone problem of biophysics. The
structure−sequence relationship is an inherent component of
the protein folding problem and of many important biological
processes involving conformational transitions in proteins. Our
understanding of protein conformational behavior has greatly
benefited from computer simulations. Computer simulations
have played an instrumental role in biophysics due to the
development of high-performance sampling algorithms and
accurate potential functions (also known as force fields).1−6

Recently, molecular simulations have made immense progress
in both directions, allowing probing of milliseconds-scale
dynamics of explicitly solvated and charged biopolymers.7,8

The ab initio folding of proteins (deducing the native fold
relying solely on physics of interactions) has long been the holy
grail of protein simulations.9−11 There has been notable success
in the ab initio folding of short (<50 residues) polypeptides.
Several studies have been able to sample folding to near-native
structures (those that are close to native structure with high
statistical significance12,13) of villin headpiece,7,14,15 WW-
domain,15−17 and Trp-cage,15,18−22 at least as isolated events.
A recent study7 has succeeded in producing simulation
trajectories with well populated native states for villin headpiece
and WW-domain. Many of these successes have only been
achieved due to advanced rapid-sampling protein simulations,
which still belong to the realm of large-scale computer
clusters1−4,23,24 or powerful dedicated supercomputers.25 The
time-scale that can be reached by large-scale computer clusters
and dedicated supercomputers is within the submillisecond

range. While only a few of the fastest folding proteins fold
within the millisecond time scale,26−28 the folding of larger
proteins still remains a distant aim. To date, there are no
published studies of sampling near-native conformations of
proteins with sequence lengths larger than 80 amino acids in ab
initio computer simulations.
Coarse-grained methods have been proposed to optimize the

computational resource utilization. These methods make use of
the time-scale separation that exists in many systems between
relatively slow processes of physical interest (such as protein
conformational changes) and fast processes (such as atomic
bond and valence angle vibrations, or water diffusion) that can
be neglected in the studies of long-time scale processes. The
obvious challenge of coarse-grained methods is properly
selecting the level of detail to preserve the phenomena of
interest while avoiding unnecessary computations. In this study,
we focus on detailed modeling of proteins using the recently
developed approach of discrete molecular dynamics
(DMD),15,29−32 which uses the implicit solvent model combined
with atomic-level details of the protein macromolecule.
Previously, we constructed the DMD force field using the
CHARMM effective solvation model by Lazaridis and
Karplus33 to model the electrostatic interactions with the
solvent and explicit modeling of hydrogen bonds to model the
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electrostatic interactions between polar/charged atoms. We
have applied DMD methods for simulations of biopolymers
and have demonstrated its ability to reproduce proteins
equilibrium dynamics with accuracy comparable to the accepted
MD methods.9,15,29−32,34 However, as the protein length
increases, the accessible conformational space grows exponen-
tially which requires adequately longer sampling and results in
the accumulation of the inherent inaccuracies of the force field,
thus limiting the ability of current methods to achieve native
folding of large proteins. An improved conformational sampling
can be achieved with replica exchange simulations.35 The
replica exchange approach has allowed us to observe the folding
of several small fast-folding proteins to their near-native
states.15 However, it is not straightforward to extract the
folding kinetics from replica exchange simulation trajectories
since the temperatures in each replica follow a random walk.
Therefore, in order to study folding of larger proteins, and
especially, the kinetics of folding process, it is necessary to
improve the computational sampling methods and force field
accuracy.
Here, we extend our approaches in order to access longer

time scales and also larger systems. We extend the DMD force
field by introducing long-range electrostatic interactions, which
allow us to model salt-bridges. We also include a sequence-
dependent semiempirical potential accounting for natural
propensities of certain amino acid sequences to form specific
secondary structures. We also enhance the computational
performance by parallelizing the DMD algorithm. We focus on
practical applications of our method such as real time
performance and its scaling ability. We benchmark our model
by studying folding equilibrium and kinetics for the group of
fast-folding proteins. We also test our DMD method on the
folding of larger proteins ranging from 60 to 120 amino acids.
To our knowledge, this is the first study of the computer
simulation sampling of near-native conformations of proteins
>80 residues long using up to 32 computer processors, which is
a very modest amount of commonly available computer
hardware. Using a small number of commodity computers,
we are able to achieve sampling quality and folding accuracy
comparable to the explicit-solvent simulations running on high-
end computer hardware. We believe that this study clearly
demonstrates feasibility of protein folding and its related tasks
using commodity computers.

■ METHODS
Discrete Molecular Dynamics Simulation of Proteins.

The DMD method15,36−38 is an event driven simulation
method using a discrete potential energy function (“force
field”). It is numerically equivalent to traditional MD up to the
discretization step. In the limit of small potential energy
discretization step Δx, DMD will produce trajectories identical
to traditional MD in the limit of small time step Δt for the same
force field.
DMD features a reduced amount of calculations compared to

traditional MD, as there is no need to compute forces and
accelerations. Instead, DMD consists of a sequence of atomic
collisions. In MD, atoms move with constant accelerations
during the integration step. In DMD, atoms move with
constant velocities between collision events. The benefit of
using a discretized potential function in DMD is similar to MD
with an adaptive time step,39−42 where slower motions (shallow
potential wells in MD, wide potential steps in DMD) are
computed with larger time step Δt than the high frequency

oscillations (sharp potential wells in MD, narrow steps in
DMD) such as bonded interactions. The earlier DMD
implementations faced challenges of complex event scheduling
algorithms,36 high memory usage,36 and difficulties of
parallelization.43 However, with advances in computer technol-
ogy, event driven simulation algorithms43−48 have overcome
these earlier problems. In addition to the computational
efficiency of DMD, its event-driven nature allows flexible
modeling of specific interactions that define the structure and
dynamics of biomolecules.15

In this study, we use the all-atom protein model developed by
Ding et al.15 that has been extended to account for long-range
charge−charge interactions and sequence-dependent local
backbone interactions. The all-atom protein model15 is based
on the CHARMM19 energy function along with EEF1
solvation model33 and an explicit hydrogen bonding potential.
The discrete representation of DMD potential allows simple
and efficient implementation of hydrogen-bond properties of
directionality and saturation, as it permits instantaneous
switching of interaction potentials between the atoms when
bonds are formed. Here we extend the DMD force field to take
into account long-range charge−charge interactions in addition
to the short-range interactions of polar groups with each other
(the formation of hydrogen bonds) and with the solvent
(provided by EEF1 solvation model). Long-range electrostatic
interactions stabilize the native state of the protein,49−51 and in
our simulations of short proteins, we observe higher
populations of near-native states when long-range interactions
are included (Supporting Information Figure S1), despite the
simplistic representation of electrostatics in our simulations. We
observe an even higher population of near-native states when
an additional force field term that accounts for sequence-
dependent backbone interactions is included (Supporting
Information Figure S1). This sequence-dependent force field
correction accounts for subtle differences in short-range
interactions between backbone atoms of different amino
acids. These sequence-dependent interactions result in different
propensities toward certain secondary structures for different
amino acid sequences.

Parallel Discrete Molecular Dynamics. DMD is tradi-
tionally considered to be intrinsically difficult for parallel
implementation. The reason for this difficulty is that in the
sequence of DMD events, every subsequent event is computed
from the current atom positions and velocities, which
themselves result from a preceding chain of events. DMD
events include atom collisions, as well as noncollision events
needed to model thermostat, hydrogen bonding and to keep
track of the atom’s nearest neighbors.52 Any two events in
DMD are potentially coupled; that is, the outcome of a
preceding atomic collision may affect the time and place of the
subsequent events. The common conclusion is that it is
impossible to predict many collisions in parallel, since after the
first collision other predictions may become invalid. However,
there is a workaround for this challenge, if we note that
coupling of collisions is limited in time and space. When a
certain collision between atoms i and j takes place, its effect
propagates through the system with a finite average speed.
Therefore many of the earlier collision predictions will remain
valid if the participating atoms k and l are located sufficiently far
from both i and j and the k−l collision takes place within a
short time period after the i−j collision. The feasibility of the
event-based parallelization approach has been recently
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demonstrated by Khan and Herbordt48 using a scalable
implementation on up to 8 CPUs in shared-memory system.
The parallelization approach described in Khan and

Herbordt48 splits the DMD simulation cycles into several
stages. First, every collision event is predicted based on the
current atoms positions and velocities. Using the predicted
collision time, DMD computes new atoms coordinates and
velocities. However, unlike the regular DMD algorithm, in
parallel DMD, the atoms’ state is not immediately updated.
Instead, results of the collision evaluation are stored at a
temporary memory location (Supporting Information Figure
S2). Then every event is tested to exclude collisions that have
been superseded by an earlier collision of participating atoms
(effect of coupling). Finally, events that have not been excluded
are “committed”, that is, results previously stored at temporary
location are copied to the primary storage of atom properties.
Certain stages, such as collision prediction, evaluation, and
testing for coupling, can be performed simultaneously for most
of events, while the committing stage is executed only serially.
The intermediate temporary storage of predicted atom
coordinates is required for speculative and parallel processing
of predicted collisions. When many collisions are analyzed in
parallel, the new atom coordinates, as well as newly predicted
collisions are stored in temporary variables. If execution of an
event results in cancellation of one of the following events due
to coupling, the canceled events will be discarded together with
the temporarily stored evaluation results. In a typical DMD
simulation, event prediction is the most computationally
intensive component, thus its parallelization produces the
largest performance gain.
DMD performance depends on the average number of

interacting neighbors around an atom. Generally, DMD
simulations of compact objects, such as collapsed globular
proteins are more computationally costly than simulations of
dilute systems such as unfolded protein. DMD simulations of
larger compact proteins are slower due to the lower ratio of
surface to buried atom number, since buried atoms have on
average more neighbor atoms and require more intensive
calculations to predict the collision. Performance of the parallel
DMD also depends on the fraction of coupled events. Parallel
processing of coupled events is impossible, as execution of an
earlier event invalidates results of evaluation of the latter event.
However, the probability of event coupling decreases as the
system size grows (Supporting Information Figure S3). Due to
lower rate of the coupled events, efficiency of the event-based
parallelization approach increases for large systems and partly
compensates the slowdown due to larger fraction of buried
atoms. This compensation results in nearly linear dependence
of simulation time on protein length for parallel DMD (Figure
3).
Thread synchronization is the most important step in parallel

DMD (pDMD) simulation, which is not present in serial
algorithm. We need to ensure that two or more threads never
simultaneously modify the same shared data. The result of such
unsynchronized data access is unpredictable. The synchroniza-
tion is usually preformed by introducing the so-called “lock
mechanism”, which allows one thread to access data and make
the other thread wait until the first thread is no longer accessing
the data. We also detect coupled events and ensure that they
are processed in a serial manner. Thread locking and coupled
events lead to wasted CPU cycles with adverse effects for
parallelization efficiency. Performance of thread synchroniza-
tion strongly affects overall pDMD performance as handling of

every collision requires at least one synchronization point using
a blocking lock mechanism, and may cause threads to waste
time waiting for one another. This problem intensifies for our
all-atom force field for DMD simulations of proteins.
Compared to the model of a homogeneous fluid with single
well interaction potential,48 DMD of proteins produces more
frequent collisions (Supporting Information Figure S4), as it
employs complex multiwell potentials, includes a thermostat,
and allows for dynamic changes of atomic interactions to
simulate chemical reactions and noncovalent reversible
bonding, such as hydrogen bonds and salt bridges. In order
to minimize the locking overhead, we have developed the
parallel DMD algorithm using only nonblocking locks.
Nevertheless, the high rate of data exchange between threads
makes our implementation of parallel DMD highly dependent
on the speed of memory access. On modern processors, such
the Intel Xeon or AMD Opteron, the highest exchange rate is
achieved between the cores of a single multicore CPU.
Therefore, the best scaling of the parallel DMD is achieved
when all threads run on CPU cores on the same dye
(Supporting Information Figure S5).

Folding Kinetics of Small Fast-Folding Proteins.
Starting from a fully extended conformation, we generate 30
independent trajectories of 0.5 μs each at a constant
temperature of 300 K. We evaluate the accuracy of folding by
observing the root-mean-square deviation (rmsd) of α-carbon
atom positions from the crystal structure and fraction of native
contacts53 (Q-value). We use rmsd, Q-value, and internal
energy as state variables to construct density of states diagrams
in order to analyze sampled conformations (Supporting
Information Figures S6 and S7). In the case of WW-domain,
we computed rmsd and Q-values for the chain segment

Figure 1. Folding kinetics of the short proteins. (A) Root-mean-square
deviation of conformations from crystal structure in the representative
trajectory for villin headpiece (upper panel) and WW-domain (lower
panel). (B) Near-native structure of villin headpiece (upper panel) and
WW-domain (lower panel) observed during simulations displayed
using cartoon representation in PyMol. Crystal structures are shown in
gray. (C) Probability to observe folding event as function of time for
villin headpiece (Δ) and WW-domain(○). Dotted lines indicate
exponential fitting.
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between the conserved W11 to W34, and in villin headpiece,
we analyzed the segment between S43 and L75. We have
excluded the unstructured protein segments from our analysis
in order to minimize the effect of the random fluctuations of
these segments on our structural studies.
Equilibrium Protein Folding: Sampling the near-

Native States of Larger Proteins. Similar to short proteins,
we start simulations from a fully extended conformation and
generate 32 independent trajectories at constant temperature of
300 K for each of the test proteins, listed in the Supporting
Information Table S1. Using state diagrams derived from rmsd,
Q-value, and potential energy (Figure 2, Supporting
Information Figures S8−S11), we characterize the quality of
sampling and accuracy of force field. We compute the time-
dependent fraction of native contacts per residue and matrix of

native contact formation probabilities to analyze the propensity
of protein structural elements to the native conformation.
Additionally, we estimate the structure predictive ability of the
DMD force field based on the commonly used measure of
global distance test.54 To minimize contribution of random
fluctuations, we have excluded highly mobile residues from our
rmsd calculation. These excluded regions are five residues at C-
terminal in villin 14T, three residues at N-terminal, and six
residues (M46−G51) in the unstructured connecting segment
in ACBP.
We use the ratio of the cumulative length of N simulation

trajectories of length τmax to the experimental folding time ζ =
Nτmax/τf as a rough estimate of the quality of sampling. Mainly
due to the use of an implicit solvent model, folding times of
short proteins in DMD simulations are approximately 50 times
shorter than experimental folding times according to our
folding kinetics study of small, fast-folding proteins. In other
words, sampling required to observe one folding event of villin
headpiece or WW domain on average is ζ ∼ 0.02. Assuming
that this ratio holds for longer proteins, for a protein with an
experimental τf ∼ 2 ms (such as ubiquitin), we can observe on
average one folding event in a single 40 μs long trajectory. In
practice, 32 trajectories of 0.3−0.5 μs long add up to a
cumulative length of 9−15 μs (Table 1). The achieved
sampling is less than needed for observing one or more of
folding events, but it is sufficient to evaluate the performance
and application of the force field and the DMD simulation
algorithm.
We can estimate DMD sampling efficiency and performance

of the force field by characterizing the sampled structures with
the smallest rmsd to the native state. Strictly speaking, the
smallest rmsd has the nature of an extreme value and does not
measure the force field ability to correctly reproduce the entire
potential energy landscape. Nevertheless, considering an
innumerably large number of conformations available to a
polypeptide chain,55 the smallest rmsd can be used to estimate
the force field ability to provide the necessary bias toward the

Figure 2. Acyl-coenzyme A binding protein (ACBP). States density maps: (A) energy vs rmsd; (B) Q-value vs rmsd; (C) energy vs Q-value; (D)
best fit of simulated (rainbow) to native structure (gray) displayed using the cartoon representation in PyMol; (E) per-residue native contact
frequency in a sample trajectory; (F) density of native contacts. The lower triangle shows native contacts, gray squares in the upper triangle indicate
the probability to observe native contacts in our simulations, and open circles show native contacts with probability to observe below Pthreshold = 0.03.
More details are provided in the Supporting Information.

Figure 3. Wall-clock time needed to progress DMD simulation by 100
ps as a function of protein length. (A) Absolute time in seconds of
runtime. (B) Normalized time in seconds of runtime per one residue.
MD performance was evaluated with Gromacs 4.0.5 [2] using SPC/E
water model and time step of 4 fs.
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native state. In order to evaluate the force field bias toward a
native state, we calculate the probability of observing a smallest
rmsd structure by chance. A recent analysis13 finds that rmsd
for alignments of pairs of random proteins of M residues can be
well-described by the Gumbel distribution function f(x) = (1/
σ)e−(x−μ)/σee

−(x−μ)/σ

with a peak at μ = 3.37M0.32 and scale of σ =
0.48M0.32. The selectivity of DMD force field to the native state
basin can be characterized by the ratio of the fraction of near-
native conformations with given rmsd to the P-value computed
from the rmsd for random structures (Table 1).
Given the a priori insufficient sampling to observe the

complete folding of the larger proteins, we estimate the
predictive capability of DMD using the GDT score.54 This
score takes into account both local and global protein structure,
which makes it less sensitive to the presence of outlier
fragments as compared to rmsd.

■ RESULTS AND DISCUSSION

Folding Kinetics of Small Fast-Folding Proteins. To
evaluate the performance of our method, we study the folding
equilibrium and kinetics of small, fast-folding proteins. Fast-
folding peptides such as WW domain or villin headpiece are the
popular benchmarks for computational folding methods. WW
domain is an all-beta domain of 39 residues found in many
proteins and capable of binding proline-rich sequences. The
folding rate of engineered fast-folding mutants27 of WW
domain is of the order of 105 s−1. For this study, we have
utilized a 34 residue WW domain (residues 6−39) of the
hPIN1 FIP mutant56 (PDB ID 2F21). Villin headpiece57 (PDB
ID 1YRF) is the all-alpha fragment of 35 residue of an actin-
binding protein villin. Villin headpiece is an ultrafast folding
protein, with folding times of certain sequences reaching 0.2
μs.26

We have shown previously15,58 that the DMD method is
capable of sampling folded protein states within 2 Å of root-
mean-square deviation of backbone atoms for several small
proteins using replica-exchange simulations. With the updated
DMD force field combined with the enhanced sampling
enabled by parallel computing (see the Methods section), we
are able to sample multiple folding-unfolding transitions within
a single DMD trajectory at constant temperature (Figure 1A).
For villin headpiece, we observe structures that feature rmsd as
low as ∼1 Å from the crystal structure, while simulations of the
WW domain feature structures with rmsd ∼2 Å from the crystal

structure (Figure 1B, Supporting Information Figures S6 and
S7). Given that reference crystal structures themselves have
finite resolution (1 Å for villin headpiece and 1.5 Å for WW
domain), we can infer that DMD simulations have accurately
reproduced the experimental crystal structures. Folding of all-β
proteins constitute a significant challenge59 as β-strands are
stabilized by tertiary contacts and their formation requires
cooperativity between residues located far from each other
along the backbone. Further, we observe both the proteins to
spend tens of nanoseconds in their near-native folded states,
suggesting that these states are not transient conformations, but
are associated with energy minima.
Since the simulations of the Fip35 WW-domain and villin

headpiece feature multiple folding−unfolding transitions within
∼30 ns, we expect at least one folding event in every
independent trajectory of 0.5 μs each. To estimate the average
folding time ⟨τ1⟩, we perform multiple independent folding
simulations to compute the probability Pf(τ1) that a fully
stretched polypeptide chain will fold to a near-native state after
a given period of time τ1 in our simulations. Since our initial
configuration is always a stretched chain, ⟨τ1⟩ is not a true
average protein folding time τf but only an approximation of
folding time. However, given that the initial collapse time ⟨τ0⟩ <
0.1⟨τ1⟩ is small compared to folding time, and initial velocities
are randomized at every run, we consider ⟨τ1⟩ as a good
approximation of τf.
Since our DMD simulations are based on the implicit solvent

model, we expect that our estimates of ⟨τ1⟩ are significantly
smaller than experimentally observed protein folding times.
This acceleration is due to the larger self-diffusion constant of
protein chain and faster segmental dynamics in the absence of
collisions with solvent molecules. It is possible to reproduce
experimental diffusion rates using a method for correction of
protein dynamics proposed by Javidpour et al.60 However, for
simplicity we assume that diffusion acceleration is independent
of protein sequence and is of the same magnitude for all our
test proteins. Thus, protein folding time computed by our
DMD method primarily characterizes accuracy of the potential
energy function (force field).
We define Pf(τ1) as the fraction of trajectories that have

reached rmsd < 2.2 Å from the native state at least once within
time τ1 (see the Methods section; Figure 1C), where a
threshold of 2.2 Å was selected as a separation between the
folded and unfolded state (Supporting Information Figures S6,
S7). The exponential decay of Pf(τ1) indicates the presence of a
single rate controlling barrier, in line with experimental
observations.26,27 Single exponential two-parameter fitting
Pf(τ1) = e(τ1−τ0)/⟨τ1⟩ produced average folding times of 35 ns
for villin headpiece and 68 ns for WW-domain. The second
parameter τ0 ∼ 3 ns takes into account the initial collapse time
from the stretched conformation. It is interesting to note that
the folding time of WW-domain is about two times that of villin
headpiece. The absolute values of folding times in our
simulation are about 2 orders of magnitude smaller than the
times observed experimentally, as expected for our model.
However, the approximately 2-fold difference of folding times
agrees with experimental observations.

Equilibrium Protein Folding: Sampling the near-
Native States of Larger Proteins. The successful application
of our new force field to short proteins has motivated us to
perform folding simulations of longer proteins with the
extended all-atom force field. Even though there have been
studies where small proteins have been folded successfully

Table 1. Summary of Equilibrium Folding Simulations
Resultsa

name length
min Cα
rmsd P-value sampling, ζ GDT-TS

villin
headpiece

33 1.2 Å 10−215 10 55.5 ± 1.7

WW domain 23 0.6 Å 10−308 6 61.4 ± 3.7
ACBP 76 4.1 Å 10−58 0.0019 34.3 ± 1.3
ubiquitin 76 6.6 Å 10−16 0.0055 33.1 ± 1.8
SH3 56 6.1 Å 10−15 0.0096 27.6 ± 1.2
λ-repressor 79 5.5 Å 10−29 0.0078 34.8 ± 1.2
villin 14T 121 9.9 Å 10−6 0.00064 18.1 ± 0.7
aThe length shown for the segment actually used to compute rmsd.
The GDT-TS score was computed for the lowest potential energy
conformations. The significance of the observed rmsd values was
estimated using the distribution of rmsd values of random protein
alignments.13
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(both villin headpiece and WW-domain have been folded
computationally within 1 Å deviation from crystal structure7),
folding of proteins beyond 50 amino acids is still a challenging
task. In order to evaluate the ability of the modified DMD force
field to predict native protein conformations, we chose a group
of larger proteins whose folding mechanism has been studied
both theoretically and experimentally. These proteins feature
different ratios of secondary-structure elements and a relatively
short experimental folding time. The selected proteins are
known to fold on the millisecond scale:61 all-β SH3 domain (1
ms, 56 amino acids (aa)), α−β ubiquitin (2 ms, 76 aa), all-α λ-
repressor (2 ms, 80 aa), all-α ACBP (∼6 ms, 86 aa), and villin
14T (15 ms, 126 aa). Unlike the case of villin headpiece and
WW-domain (described in the previous section), estimated
folding times of other test proteins are much longer than
individual simulation trajectories. Studying folding kinetics for
these long proteins requires application of special ap-
proaches62,63 that are beyond the scope of the current work.
Thus, we focus only on studying the ability of DMD to sample
native-like conformations in multiple independent equilibrium
folding simulations (see the Methods section).
With the exception of villin 14T, the sampling quality

achieved in our DMD simulations is sufficient to observe strong
correlation between low backbone rmsd, high Q-value, and low
potential energy (Figure 2, Supporting Information Figures
S6−S11). The conformations sampled in the DMD trajectories
recapitulate many features of the native folds, such as
hydrophobic cores or characteristic fragments. Below we briefly
discuss the specific behavior of each protein.
Acyl-Coenzyme A Binding Protein (ACBP). This is a small

four-helix bundle consisting of 86 amino acids which folds in
∼6 ms64 in an apparent two-state process.64,65 Formation of
contacts between 8 residues of helix α1 and α4 (Figure 2D)
was determined to be the rate-limiting step.64 We use bovine
ACBP66 (PDB ID 2ABD) as the reference structure. In the
lower-rmsd state, the core is well-packed and the rate limiting
structure consisting of residues F5, A9, L15, Y73, I74, and L80
is formed. The per-residue fraction of native contacts (Figure
2E) for this α-helical protein is mostly contributed by
intrahelical contacts. We also observe the early formation of
the secondary structure during the simulation, which is in line
with experimental data on ACBP unfolding.
Ubiquitin. This is a 76 amino-acid highly conserved β-grasp

protein that folds in ∼1 ms.67 We use the human ubiquitin68

(PDB ID 1UBQ) as the reference structure. In most of the
simulation trajectories, formation of native contacts occurs first
in the β1- and β2-strands and the α1 helix at the N-terminal
fragment (Supporting Information Figure S8D,E). This order is
consistent with the ubiquitin folding pathway suggested by
Sosnick et al.69

Src Homology Domain (SH3) . This is a conserved,
independently folding, protein binding domain arranged in a
characteristic β-barrel consisting of five, sometimes six β-strands
packed into two orthogonal β-sheets with a long unstructured
loop between β-strand 1 and 2 (RT loop). We use the fastest
known folding variant of FYN SH370 (PDB ID 1FYN, 56
residues) with two mutations (A39G and V55F)71 as the
reference structure in our simulations.
In our simulations, we are able to observe the experimentally

detected formation of the hydrophobic core by I28, A39, and
I50 at the early stages of SH3 folding71 (Supporting
Information Figure S9F). However, the primary difficulty in
sampling structures close to the native state as defined by the

crystal structure is due to the improper packing of the RT-loop.
Contrary to the expected packing of the unstructured RT-loop
on top of the β-barrel, we observe an RT-loop in an open
conformation with a tendency to form either α-helical or β-
strand secondary structures (Supporting Information Figure
S9D). However, the RT-loop itself and core β-barrel are
formed, and several trajectories have sampled near-native
structures with rmsd ≈ 6 Å.

λ-Repressor. This protein consists of five helices, with folded
state stabilized by the hydrophobic core formed by L36, L40,
and I47.72 We use the structure70 (PDB ID 1LMB) of 80-
residue segment (residues 6−85) of the fast-folding λ-repressor
mutant73 as the reference. In our simulations, we did not
observe the formation of the native hydrophobic core, although
structures very similar to the native state (Supporting
Information Figure S10D, rmsd ≈ 5.5 Å) can be stabilized by
an alternate hydrophobic core, such as the core formed by I46,
I68, and F76 in the structure. Nevertheless, similar to other
proteins, sampling from 32 trajectories shows significant
correlation between small rmsd, high Q-value, and low
potential energy (Supporting Information Figure S10A−C).

Villin 14T. This protein features two hydrophobic cores on
sides of the central β-sheet.74 Core 1 is formed by
predominantly aliphatic residues of the long helix (α2, amino
acids (aa) 80−90), and core 2 is formed by short helix α3 (aa
103−110), and β-strands β6 (aa 36−40) and β7 (aa 114−118)
with a high fraction of aromatic residues.74 We use the chicken
villin75 (PDB ID 2VIK) as the reference structure. In most of
the trajectories, we observe rapid formation of the central β-
sheet and presence of many hydrophobic contacts of core 2
(Supporting Information Figure S11E). However, the con-
formations in most of our trajectories feature helical content
lower than that of the native state. In particular, the longest
helix α2 is often replaced by one or two β-strands.
Nevertheless, the DMD force field correctly captures many
important structural features of villin 14T such as the central β-
sheet and short helix α3.

■ CONCLUSIONS
For short proteins, we generate 0.5 μs long trajectories using
DMD, which are sufficient to observe at least one folding
transition event, with most trajectories featuring multiple
folding−unfolding transitions. In the ensemble of trajectories,
we compute the average folding time from the exponential
decay of fraction of unfolded conformations, the characteristic
feature for two-state folding proteins. From our folding
simulations, we study the ability of DMD to sample near-
native conformations of proteins up to 126 residues long,
including an all-β WW-domain and mixed α/β-proteins. In all
simulations, except for villin 14T, we have sampled structures
much closer to the native structure than could be achieved by
random sampling, with the P-value of the rmsd many orders of
magnitude below the fraction of near-native structures observed
in the trajectories (Table 1).
We estimate the structure predictive capability of DMD with

the commonly used GDT score.54 Here we limit ourselves to
structure prediction for the subset of 1−10 ms folding proteins;
however, there is evidence61 that folding rates of the significant
number of studied proteins falls in this range. In our
simulations, the average GDT total scores for the lowest
energy states in case of long proteins range from 18 for villin
14T to 35 for the λ-repressor. For comparison, most ab initio
predictions made in CASP9 in the free modeling category using
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common MD algorithms and force fields fall into the range of
15−30,76,77 indicating that native state prediction with the
DMD force field is on par with commonly used structure
prediction methods.
Enhanced molecular dynamics simulation methods have

been instrumental in routine tasks, such as estimation of
protein stability and structure rigidity, correlation analysis, and
structure fitting to electron density maps.78 Application of
implicit solvation models enhanced the performance by several
orders of magnitude compared to methods utilizing an explicit
solvent. However, concerns about the force field applicability
range limited the use of implicit solvent models. We
demonstrate that the implicit solvent force field of DMD
adequately represents the potential energy function of many
common proteins and, thus, can be instrumental in studies of
many interesting phenomena, such as protein dynamics,79,80

active site function,81 and ligand binding,34 as well as for
protein structure optimization.82

We demonstrate that the DMD force field in its present state
can predict protein core structure at the level of the standard
explicit-solvent MD methods, while the DMD algorithm allows
for significantly smaller computational efforts than explicit-
solvent MD. We show that DMD can be parallelized at a very
high collision rate, which opens a new avenue for more
computationally intensive modeling of proteins.
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